EXCELLENCE IN THE BLACK SEA REGION
Constanța Maritime University is a preeminent higher education institution in the maritime field. The university was established in 1990 and has been accredited by the Ministry of National Education (MEN), the Romanian Agency for Quality Assurance in Higher Education (ARACIS) and by the Romanian Naval Authority.

CMU has also been audited by international agencies, such as Bureau Veritas Quality International (UKAS) in 2013 and the European Maritime Safety Agency (EMSA) in 2014.

During 2013-2014 CMU has undergone a series of assessments and audits by the Japan Maritime Center meant to ensure the acknowledgement of the studies provided by CMU by the Japanese Ministry of Transportation. The confirmation of the Japan Maritime Center is pending.
to provide performing study programmes on all levels of university and post university training, in order to train specialists for maritime transport activities and related activities;

providing competitive advantage in gaining employment or future academic opportunities;

making an impact on social, scientific and marine development worldwide;

to perform research activities in associated scientific fields focusing on competition acknowledgment as a progress factor and on quality management as an instrument for continuous improvement of the education and research process;

development of international relations;

constantly upgrade the teaching curricula in order to ensure professional career – defining competences in compliance with the global labour market requirements and with international standards;

updating university partnerships with maritime universities in the world (international mobility).
Faculty of Navigation and Waterborne Transport, with 3 Departments: Navigation, Fundamental Sciences and Humanities and Management in Transports;

Faculty of Marine Engineering - 4 Departments: General Engineering Sciences, Engineering Sciences in Mechanics and the Environment, Electrical Sciences, Electronics and Telecommunications;

University branch founded in 2012 in Aktau, Kazakhstan, within Caspian State University of Technologies and Engineering, with two majoring directions for Navigation and Marine Engineering for Bachelor studies in English;

Department of Professional Counseling and Management of IMO Courses;
Like any conventional engineering course, all marine engineering is a four year course which prepares an individual to become an engineer on ships.

Marine engineering and navigation field, according to the national law and the STCW provisions, majoring in Navigation and waterborne transports (full time studies in Romanian and English and part time studies). Diplomas cover specific engineering and maritime competences – voyage planning, execution and monitoring, safety of navigation, operation and running of navigation aids.

Marine engineering and navigation field, according to the national law and the STCW provisions, majoring in Marine Engineering (full time studies in Romanian and English and part time studies), graduates achieve competence in operating and running naval engines, installations and machinery.
Electrical Engineering Field, according to the national law and the STCW provisions, majoring in Electrical Engineering (full time and part time studies) - undergraduates acquire competences in the operation and running of electrical machinery and equipment, testing, diagnose and maintenance of electrical systems.

Engineering and Management Field, according to the national law, major in Economic engineering in the field of transports (full time studies) enables undergraduates to gain competence in technical operation of resources, financial administration of companies, human resource administration, marketing techniques.

Field of Environmental Engineering, according to the national law, major in Engineering and the protection of the environment (full time studies), undergraduates will be able to design and operate installations and equipment meant for water and air purifying and for contaminated soil, the management of wastes and to draw up impact studies on the environment.

Field of Electronic Engineering and Telecommunications - according to the national requirements and the STCW provisions, this field of studies was also designed following the STCW'95 recommendations to improve the competence of the crew on board with a new track, namely the on board electronic engineer, able to cope with all the problems deriving from the use of advanced electronic aids to navigation and the communication equipment. Undergraduates majoring in Technologies and Telecommunication Systems (full time studies), achieve competence in operating fixed and mobile communication equipment, designing telecommunication networks, use of software tools based on a global view of data, voice, video and multimedia services.

Master’s Studies

According to the regulations in force until the present moment, management positions onboard require Master's courses after the completion of the Bachelor's studies.

Curricula of the master's programmes are based on the requirements and competence deriving from STCW'95, closely following the frame courses of the IMO for each of the departments: deck, engine and electrical.

FACULTY OF NAVIGATION AND WATERBORNE TRANSPORTS
- Maritime Transport;
- Engineering and Management in ports and maritime field;
- Management and logistics in transports;
- Engineering and management in terminals and ships operation;
- Engineering and management in maritime and multimodal transports;
- Offshore oil and gas technology and management;

FACULTY OF MARINE ENGINEERING
- Advanced techniques of mechanical engineering
- Advanced electrical systems
- Modern concepts of mechanical engineering
- Advanced engineering in the oil and gas offshore industry
- Environmental Engineering
- Integrated circuits and systems of telecommunications
<table>
<thead>
<tr>
<th>FACULTY</th>
<th>FIELD</th>
<th>STUDY PROGRAMME</th>
<th>TYPE</th>
<th>ESTABLISHMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVIGATION AND NAVAL TRANSPORT</td>
<td>Marine Engineering and Navigation</td>
<td>Navigation and Waterborne Transports</td>
<td>Full Time</td>
<td>1990</td>
</tr>
<tr>
<td>Marine Engineering and Navigation</td>
<td>Navigation and Waterborne Transports</td>
<td>Part Time</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Marine Engineering and Navigation</td>
<td>Navigation and Waterborne Transports</td>
<td>Full Time</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Engineering and Management</td>
<td>Economic Engineering in Transports</td>
<td>Full Time</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>MARINE ENGINEERING</td>
<td>Marine Engineering and Navigation</td>
<td>Marine Engineering</td>
<td>Full Time</td>
<td>1990</td>
</tr>
<tr>
<td>Marine Engineering and Navigation</td>
<td>Marine Engineering</td>
<td>Part Time</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Marine Engineering and Navigation</td>
<td>Marine Engineering in English language</td>
<td>Full Time</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Electrical Engineering</td>
<td>Full Time</td>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Electrical Engineering</td>
<td>Part Time</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>Engineering and Environmental Protection in Industry</td>
<td>Full Time</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Electronic Engineering and Telecommunications</td>
<td>Technologies and Telecommunication Systems</td>
<td>Full Time</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>CMU BRANCH AKTAU, REP. KAZAKHSTAN</td>
<td>Marine Engineering and Navigation</td>
<td>Navigation and Waterborne Transports</td>
<td>Full Time</td>
<td>2012</td>
</tr>
<tr>
<td>Marine Engineering and Navigation</td>
<td>Navigation and Waterborne Transports</td>
<td>Full Time</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Marine Engineering and Navigation</td>
<td>Marine Engineering in English language</td>
<td>Full Time</td>
<td>2012</td>
<td></td>
</tr>
</tbody>
</table>
Master’s Studies

<table>
<thead>
<tr>
<th>FIELD</th>
<th>STUDY PROGRAMME</th>
<th>TYPE</th>
<th>ACCREDITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Engineering and Navigation</td>
<td>Maritime Transport</td>
<td>Full time 2 years</td>
<td>Accredited</td>
</tr>
<tr>
<td>Naval Engineering and Navigation</td>
<td>Engineering and Management in Ports and Maritime Field</td>
<td>Full time 2 years</td>
<td>Accredited</td>
</tr>
<tr>
<td>Naval Engineering and Navigation</td>
<td>Modern Concepts of Mechanical Engineering</td>
<td>Full time 2 years</td>
<td>Accredited</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Advanced Techniques of Mechanical Engineering</td>
<td>Full time 2 years</td>
<td>Accredited</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Advanced Electrical Systems</td>
<td>Full time 2 years</td>
<td>Accredited</td>
</tr>
<tr>
<td>Naval Engineering and Navigation</td>
<td>Advanced Engineering in the Oil and Gas Offshore Industry – in English language</td>
<td>Full time 2 years</td>
<td>Accredited</td>
</tr>
<tr>
<td>Naval Engineering and Navigation</td>
<td>Engineering and Management in Terminals and Ships Operation</td>
<td>Full time 2 years</td>
<td>Accredited</td>
</tr>
<tr>
<td>Naval Engineering and Navigation</td>
<td>Engineering and Management in Maritime and Multimodal Transports</td>
<td>Full time 2 years</td>
<td>Accredited</td>
</tr>
<tr>
<td>Naval Engineering and Navigation</td>
<td>Offshore Oil and Gas Technology and Management</td>
<td>Full time 2 years</td>
<td>Accredited</td>
</tr>
<tr>
<td>Electronic Engineering and Telecommunications</td>
<td>Integrated Circuits and Systems of Telecommunications</td>
<td>Full time 2 years</td>
<td>Accredited</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>Engineering and the Protection of the Environment</td>
<td>Full time 2 years</td>
<td>Accredited</td>
</tr>
<tr>
<td>Naval Engineering and Navigation</td>
<td>Management in Transports and Logistics</td>
<td>Full time 2 years</td>
<td>Accredited</td>
</tr>
</tbody>
</table>

Doctoral Studies

<table>
<thead>
<tr>
<th>FIELD</th>
<th>STUDY PROGRAMME</th>
<th>TYPE</th>
<th>ACCREDITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Sciences</td>
<td>Marine Engineering</td>
<td>Full time</td>
<td>Accredited</td>
</tr>
</tbody>
</table>
Students have to do a number of mandatory certification courses before they get on the ship. They are as follows:

1. STCW Courses - The Standards of Training, Certification, and Watch-Keeping (STCW) Courses for Seafarers are to be done by all marine engineers. STCW courses include:
 - EFA – Elementary First Aid
 - MFA – Medical First Aid
 - BFF – Basic Fire Fighting
 - AFF – Advanced Fire Fighting
 - PSCRB – Proficiency in Survival Craft and Rescue Boat
 - PST – Personal Survival Techniques
 - PSSR – Personal Safety and Social Responsibility

2. Operational Level Engine room simulator course (for 4th and 3rd engineers)
3. Management level engine room simulator course (for 2nd and chief engineers)
4. CFT/OTF/GTF – Container/Oil tanker/Gas tanker familiarization courses depending on the type of ship
5. Certificate of Competency (COC) Course

To become a deck watch keeping officer (officer in charge of a deck watch) students must:
- complete 4 years of studies, covering IMO Model Course 7.03 syllabus (officer in charge of a navigational watch), complying with STCW Code Table A-II/1
- 10 safety courses compulsory for maritime training
- complete 12 months of sea service as deck cadet
- successfully pass graduation exams in the university followed by exams with the governmental authority (Romanian Naval Authority) to obtain the Officer of the Watch Certificate for the deck department;

To become an engine watch keeping officer/electrical officer (officer in charge of an engineering watch) students must:
- complete 4 years of studies, covering IMO Model Course 7.04 syllabus (officer in charge of a navigational watch), complying with STCW Code Table A-III/1
- 8 safety courses compulsory for maritime training
- complete 6 months of sea service as engine cadet
- successfully pass graduation exams in the university followed by exams with the governmental authority (Romanian Naval Authority) to obtain the Officer of the Watch Certificate for the engine department

Students are trained in compliance with the national standards established by the Ministry of National Education and with the international standards set out by the International Maritime Organization (IMO). CMU does not provide opportunities for the completion of the mandatory onboard training.
Constanta Maritime University prides itself with over 5000 students. We welcome foreign students willing to pursue a career in the maritime as well as connected fields. To this purpose, two study programmes have been developed and accredited in English language: Navigation and Waterborne Transport and Marine Engineering.

In the academic year 2014-2015 there are 262 foreign students coming from Nigeria, Turkey, Syria, Greece, Angola, Tunisia, Cameroon, Egypt, Yemen, Republic of Moldova.

NIMASA

In cooperation with the Nigerian Maritime Administration and Safety Agency (NIMASA), Constanta Maritime University has recruited 168 Nigerian students. The students are currently enrolled in their second year of studies and they will major in Navigation and Waterborne Transport and Marine Engineering in English language. A new batch of 125 Nigerian students is expected to enroll in the next academic year.
Foreign citizens from the European Union member states have the right to enroll to studies in Romania in the same conditions as Romanian citizens, directly to the universities, according to the Order of the Ministry of Education, Research, Youth and Sport no. 3855 of 17.05.2010;

The documents required for registering to a higher education institution must be translated into Romanee, authenticated to the public notary and the study diplomas must be recognized by the National Centre for Degree Assessment and Academic Recognition CNRED;

Registration and admission exam shall take place directly at the chosen faculty, in accordance with its methodology;

For the candidates who want to study in Romanian, a Romanian Language Certificate is required.

As a rule, the application file for admission to study at Constanta Maritime University has to be sent to our University.

The file shall be checked and then sent to the Ministry of National Education in Bucharest together with our formal acceptance.

The International Students Department of the Ministry does the final checking and a Letter of Acceptance is issued and sent either to the applicant or to the university.

This letter allows the applicant to obtain the study visa from the Romanian Embassy in his / her country.

Upon arrival in Romania, the Ministry will issue the Order of the Minister, a document required for enrolling at the University.

The university Registrar is in charge with the admission of foreign non-

Admission of foreign non-EU students
University Campus

The university headquarters are in the centre of Constanta town, housing the Faculties of Navigation and Marine Engineering, three Research centres, administrative and teaching departments, Nautica publishing house and the university library. Having in view its specific maritime educational field, the university set up a Nautical centre for the training of students on the banks of Mamaia lake. Besides training facilities and crafts the Nautical centre houses classes, laboratories, a new modern hostel, a fire fighting polygon.

The university campus includes:
• Headquarters housing learning areas, conference rooms, modern laboratories and simulators;
• Nautical training center, on the banks of Siutghiol lake, housing a multifunctional laboratory with electromechanical equipment, training stands, training and drilling center, football field, tennis court, sports hall;
• “Nautica” Publishing House publishes scientific books, scientific magazines, the Annals of the University, scientific journals;
• Library with over 35,000 books;
• 3 hostels with an accommodation capacity of over 650 places;
• Canteen and cafeteria.
Stationary and Container Training Galleries allow a realistic training and periodical tests of the physical conditions of Fire Fighters and Rescue Teams, under the highest level of Safety. The training can be carried out with Self Contained Breathing Apparatuses or Chemical Protective Suits, to simulate a Fire Fighter's rescue mission.

The training gallery has a 2-level construction: one level for walking and one level for crawling. Individual barriers determine the degree of difficulty. Other possible training conditions are: complete darkness, smoke, elevated temperature, sound and light effects. The construction allows changing the degree of difficulty according to the individual level of the trainees, e.g. advanced professionals or volunteers.
The Integrated Complex of Simulators covering all the departments of a real ship is a state of the art tool helping to develop seamanship skills in students. It is the best simulation system in the transport field that can be found in any of the Romanian universities.

The complex includes the following simulators:

<table>
<thead>
<tr>
<th>Training Facilities</th>
<th>Integrated Complex of Simulators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation and Ship Handling Simulator</td>
<td>Engine Room Simulator</td>
</tr>
<tr>
<td>Simulator for the Handling of Liquid Bulk Cargo</td>
<td>GMDSS Simulator</td>
</tr>
<tr>
<td>PISCES II Simulator for Emergency Situations</td>
<td>Dynamic Positioning Simulator</td>
</tr>
</tbody>
</table>
TRANSAS Full Mission Navigation Simulator - trainees gain experience in handling ships under various conditions, especially related to:

- ship handling and maneuvering, using engine and helm
- wind and current effects, shallow-water effects, bank, channel and cargo handling interaction effects
- planning and carrying out a voyage, or maneuver, or an alternative passage plan
- efficient bridge procedures in the use of all available resources to enhance navigational safety in normal and emergency situations
- formulate and execute a detailed passage plan using specified bridge procedures and making optimum utilization of all available resources of personnel and equipment, apply effective communication skills within a Bridge Team

The simulator is able to simultaneously manage several ships manned by watch teams made up of students. Each ship has its complete set of controls, equipment and devices that enables its navigation and handling in any maritime zone. Each ship complies with the technical requirements necessary for the Full Mission Bridge Simulator approval. The software that generates the information and controls is the same for all ships that can be controlled by students.
The Engine Room Simulator provides:

- training courses which are to provide high quality professional skills;
- courses meant to update the information necessary for officers and chief engineers;
- training courses for the operations performed with the ship machinery and vital auxiliary equipment;
- detailed studies for different stages of the operation process of ship machinery;
- training courses for the environmentally safe operation of ship machinery.

Kongsberg ERS Neptune MAN B&W 5L90MC - VLCC - able to train junior engineers in basic engine room operations, senior engineers in emergency operations and trouble shooting, and to train senior and chief engineers in optimal operation, fuel economy and energy conservation. This will be achieved by controlled training leading to better understanding of the total plant operation, as a result of realistic simulation of a real engine room.
Norcontrol Capella GMDSS simulator, manufactured by KONGSBERG MARITIME Norway is appreciated, recognized and recommended for training and assessment by TELENOR, Maritime Radio Division in Norway. It is designed and functions as a network of Station Instructor +10 Student Station, which operate simultaneously in real time.

All communication and navigation systems, the GMDSS alert systems, including the communication procedures required by IMO STCW 95 (distress, emergency, security, general communications, SAR-Search and Rescue) are simulated by the GMDSS Norcontrol Capella 5.1 simulator (latest audit for certification in November 2009 by the Norwegian company TELENORGROUP).
Certified Det Norske Veritas “Class A, B, C- Cargo Handling” - rules for the planning and the right way of loading the cargo, the safety of transportation and the unloading of the liquid cargo, maintaining the good navigation status of the ship regarding, trim, stability and the structural stress.

Potential Incident Simulator Control and Evaluation System (PISCES)
The Simulator is organized in such a way that the trainer can launch pollution scenarios towards the student work stations and they can virtually use various resources chosen from a library in order to limit the pollution and to retrieve and annihilate the polluting substance. The pollution accidents that may be simulated are: the discharge of hydrocarbon into the sea and the discharge of toxic and radioactive gas into the air.

PISCES II Simulator is also provided with the Module “Management of critical situations” which can be used in case of forest fires, pollution of water with hydrocarbon, accidents with hazardous cargo, searching and saving operations following naval and aircraft accidents, terrorist attacks.
Dynamic Positioning Simulator

Dynamic Positioning simulator is a computer-controlled system to automatically maintain a vessel's position and heading by using its own propellers and thrusters. Position reference sensors, combined with wind sensors, motion sensors and gyro compasses, provide information to the computer pertaining to the vessel's position and the magnitude and direction of environmental forces affecting its position. Examples of vessel types that employ DP include ships and semi-submersible Mobile Offshore Drilling Units and Oceanographic Research Vessels.

The computer program contains a mathematical model of the vessel that includes information pertaining to the wind and current drag of the vessel and the location of the thrusters.

This knowledge, combined with the sensor information allows the computer to calculate the required steering angle and thruster output for each thruster.

This allows operations at sea where mooring or anchoring is not feasible due to deep water, congestion on the sea bottom or other problems.
Electrical Machines Laboratory
In this laboratory, students are able to perform practical works to assess the operating modes of different types of electrical machines and transformers. There are all types of electrical machines, such as the asynchronous machine with two types of rotors – wound and squirrel cage rotor -, the synchronous machine, the d.c. machine, as well as electrical single-phase and three-phase transformers.

In this laboratory there is also a computer network connected to the university's Internet network, having SIMULINK and CASPOC simulation programmes, which enable students to simulate the same operating modes of electrical machines and transformers and compare the practical results with those obtained with the simulation programmes.

Electronics Laboratory
Analogue and digital electronics are taught in this laboratory. Students are familiarized with the functioning of analogue and digital electronic devices and circuits and acquire theoretical and practical skills regarding the operation, troubleshooting and design of analogue and digital electronic schemes. Specialized software, such as ORCAD and CASPOC, are used to simulate the functioning of devices and circuits.

Electrotechnics Laboratory
In this laboratory students are familiarized with the functioning and operation of electric devices. They are trained to detect defects, restore and maintain the optimal functioning of electric and electronic equipment for marine and industrial measurement and warning.
International Relations

Constanta Maritime University is an active member of the following international associations:

International Association of Maritime Universities (IAMU);
Black Sea Association of Maritime Institutions (BSAMI);
Black Sea Universities Network (BSUN);
Global On-Board Training Center (GOBTC);

IAMU gathers 57 maritime higher education institutions worldwide and aims to ensure the standardization of the teaching curricula in order to foster mobility and the gaining of the necessary competences for facing the challenges of the global labour market.

BSAMI was meant to become a practical and proactive innovator in the Black Sea region, which is an important part of the global maritime system, and to ensure cooperation in order to meet competence and proficiency requirements for maritime human resources in the Black Sea Region.

GOBTC consists of 12 MET institutions from 10 EU and non-EU countries. Its objective is to enhance opportunities of on-board training, both in quality and in quantity, to the young people of the next generation worldwide, through the international cooperation of all the stakeholders.
There are several partnership agreements signed with other maritime higher education institutions:

- Nikola Y. Vaptsarov Naval Academy of Varna, Bulgaria
- Odessa National Maritime University, Ukraine
- Istanbul Technical University, Maritime Faculty, Turkey
- Prof. Assen Zlatarov University of Burgas, Bulgaria
- Batumi State Maritime Academy, Georgia
- Ecole Nationale Superieure d'Ingenieurs de Bourges
- Gdynia Maritime Academy, Poland
- Australian Maritime College, Australia
- Shanghai Maritime University, China
- Universitat Politecnica de Catalonia, Facultat de Nautica, Spain
- Maine Maritime Academy, USA
- Maritime Academy of Nigeria
- Arab Academy for Science & Technology of Alexandria, Egypt
- Caspian State University of Technologies and Engineering named after Sh. Esenov, Aktau, Kazakhstan
- Vestfold University College, Tonsberg, Norway
- Willem Barentsz Maritime Institut, West Terchelling, The Netherlands
- Piri Reis University, Turkey
- NYK Line – Nippon Yusen Kaisha, Japan

St. George International Resources Ltd. (MoU for maritime training of prospecting Nigerian students)
Marine engineering is all about machinery on ships, boats, yachts, or any sea going vessel. There are several other technical streams that sprout out from this field.

The curriculum of the course focuses on teaching specialized knowledge of both theoretical and practical marine and mechanical engineering. Greater importance is given to impart skills and competencies that are required to operate and maintain machinery on board ships.

Practical knowledge through laboratory and workshop training is provided throughout the all four years of the program, so that students get hands-on knowledge of dismantling and maintenance of machines on ships.

While marine engineering makes an individual a ship's engineer, nautical science prepares a person to become a deck officer and we do this in our Black Sea Foundation.
The Black Sea Foundation was established by Constanta Maritime University in 2011. It has been accredited by the National Authority for Qualifications (ANC) and by the Romanian Naval Authority.

Educational Offer

Nautical science prepares a person to become a deck officer and engine officers in a two years course. Nautical science imparts nautical technology knowledge which is important to become a deck officer on board ships. Theoretical and practical knowledge required for navigation, cargo operation, ship maintenance and operation is imparted during the two years course. Hands-on training is extremely important as a deck officer and thus detailed procedure and maintenance techniques of important deck machinery is an integral part of this course. The Foundation trains future deck and engine maritime officers, as well as welders and maintenance and repairing electricians.

The training course “Deck Watchkeeping Officer” - officer in charge of a deck watch – lasts two years and complies with the requirements of STCW Code with the Manila Amendments, table A-II/1, IMO Model Course 7.03. The training course “Engine Watchkeeping Officer” – officer in charge of an engineering watch – lasts two years and complies with the requirements of STCW Code with the Manila Amendments, table A-III/1, IMO Model Course 7.04. At the completion of the training course students are awarded the Certificate of competency Maritime deck's officer of the watch – III operational level and, after passing an exam with the Romanian Naval Authority, they obtain the maritime deck's officer certificate which is internationally acknowledged.

The training courses for welders and maintenance and repairing electricians last 6 months.

Students' training complies with the national standards set by the National Authority of Qualification, as well as with the international standards set by the International Maritime Organization (IMO), in compliance with the STCW provisions. Based on several protocols, the Black Sea Foundation uses CMU's facilities and equipments in order to provide its students with proper training. At the same time, the courses are taught by CMU professors, highly trained professionals with academic expertise.
- 23 laboratories;
- 15 course rooms;
- 1 Auditorium;
- 6 seminary rooms;
- 8 simulators;
- Library with over 35,000 publications;
- Training and Sports Centre, which includes a Fire Fighting Training Polygon, sailing boats, fast rescue boats, quay for davits to hoist and launch boats, laboratory for hydrobiology, biodiversity and ecotoxicology, radio communications laboratory. There is also a multifunctional laboratory equipped with stands that reproduce the installations of a ship's engine room;
- NEPTUNE University Sports Complex;
- NEPTUNE University Sports Club (yachting, martial arts, handball, basketball, football, tennis);
- Nautica Publishing House;
- Conference room;
- 106 academics;

Students' practical training is completed at the Training and Sports Centre, where they will learn the basic seamanship technics.

The Black Sea Foundation also provides the basic IMO safety courses, which are mandatory for the issuance of the maritime deck's officer certificate.

The Black Sea Foundation does not provide opportunities for the completion of the onboard training.