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1. KINETICS AND DYNAMIC OF MARINE ENGINES 

 

Piston internal combustion marine engines have a particular feature consisting 

in the transformation of the alternative translation motion of the piston, under the gas 

pressure generated by the burning process of fuel in the cylinders, in crank shaft a 

motion, through the mean of the crank gear. 

In the following pages piston internal combustion engines dynamics general 

aspects will be presented. This category of engines includes the marine engines which 

will be analyzed in a modern analytical fashion this way offering the possibility of 

realizing fast connections between the present chapter and the next ones which are 

being devoted to an detailed analysis of the dynamic behavior of marine propulsion 

engines.  

 

1.1 Kinetics of the engine drive 

 The necessity in studying the kinetics of the engine gear is being imposed by 

the necessity of knowing the forces and the stresses generated by them by calculating 

functions defining the displacement, the speed and the acceleration of main 

components that complete de engine gear. 

 

1.1.1. Kinetics of normal engine gear 

 The normal engine gear is presented in the 1.1 diagram. Its main components 

are the crank with a R length, which has a rotation speed with an angular speed , 

having a constant value, the reciprocating rod with a L length, being articulated with 

the crank in a M defined point and having a plane-parallel motion; the piston is being 

articulated on the reciprocating rod by a bolt or a crosshead (this being a solution used 

for two stroke marine engines) having and alternative translation motion along the 

piston in the P point. 
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 For the kinetic analysis of the normal engine gear as a general coordinate the 

rotation crank angle θ is being chosen, thus the mechanism position will be 

completely defined by two variable values: β – the reciprocating rod leaning angle and 

the y-coordinate. In this manner, from the theory of mechanism [2] and [9] the 

following formulas can be applied: 









coscos

)sinarcsin(

LRy
 

 

 Were the λ ratio has been inserted also known as the elongation of the 

reciprocating rod (gear compactness coefficient) being calculated with the following 

formula: 

LR /  

 

 

Figure 1.1: The normal engine gear diagram 

 

Using those two formulas we can define the following coefficients: 
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 (1.3) 

 

 The coefficients above are known as: 

 wp – the piston speed coefficient; 

 b – reciprocating rod angular speed coefficient; 

 εb – reciprocating rod angular acceleration coefficient. 

 It should be noted that the β and y variables, as well as their derivatives are 

generalized coordinate functions θ, thus their values vary with the rotation movement 

of the reciprocating rod. 

 Depending on the previous defined coefficients we can calculate the kinematic 

values for the normal engine gear, in classical formulation [5], [11], [12]. [14], [17] as 

in (1.4) formulas. 

It can be noticed that the piston motion is being noted as yp, usual registered in 

p.m.i (lower dead center). Unlike the previous formulations the explicit dependency 

on the generalized coordinate is being highlighted by using coefficients defined by the 

(1.3) formulas. 
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Figure 1.2: The calculus diagram for the normal gear kinetic dimensions 

 

 

 

 (1.4) 

 

 

 

Continuing, the reciprocating rod motion will be described, having a mass 

center, Gb, pointed out at a distance Lm and Lp, faced with the crank articulation points, 

as well as with the piston (as pointed out in the 1.1 figure). The gravity center position 

for the reciprocating rod will be calculated using the following formula: 
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
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 (1.5) 

 

 The second formula can also be rewritten from a p.m.i perspective as: 

bGb
yLRy   (1.6) 

 

 Derivatives depending on the θ general coordinate of these coordinates are 

depending on the following coefficients as: 
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 Using these formulas the values of the components described in the 1.1 figure 

for reciprocating rod speed and angular acceleration can be calculated with: 

 

 

 (1.8) 

 

 

 Using the calculation scheme form the 1.2 figure usual formulas can be 

generated for kinematic dimensions of normal gear, taking into account the possibility 

of offsetting the gear, E, depending which a second coefficient can be defined along 

with λ, used in order to define the characteristics of this gear: 
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REe /  (1.9) 

 and the above coefficient is called relative offsetting (eccentricity). 

 By analyzing the first relation from the (1.4) set, the exact formula for the 

offset normal gear piston will be obtained as: 
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 In the above formula the + symbol stands for direct offsetting, while – stands 

for the reverse offsetting, since the cylinder axis beside the rotation axis of the crank 

shaft has the rotation direction of the cylinder or a reverse direction. The formula 

(1.10) can be developed in a Fourier series, such as: 
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0
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k
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 This is a periodic function with a 2π period, continuous and odd, that is why 

the developing coefficients are as: 
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 Were c1, c1
’, c3, c3

’ are coefficients that can be easily calculated; in exchange, 

the above integral equations are elliptical, but they are not complete elliptical 
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equations, being complex to develop if using the radicals from the (1.10) formula in 

exponential series. 

 It can be demonstrated from [4] and [17] that in these conditions the exact 

formula for normal piston displacement is as it follows: 

 
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 (1.13) 

 

 using the known notation for combinations. Further on will analyze the normal 

axial gear, one the most common for marine engines, in the above formulas, keeping 

in mind the particularity e = 0 (corresponding with E = 0). In this case, the analytical 

formulas of kinematic dimensions for the normal axial gear are given in the 1.1 table. 

It can be noticed that, for the piston displacement only first order and odd harmonics 

occur in the developing process of this dimension. 

 The harmonic coefficients for the piston displacement can be expressed as: 

 (1.14) 
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Practical speaking only first and second order harmonics are worthy and by 

overlapping them we can obtain the simplified values from 1.1 table were the values 

for the general coordinate θ have been presented for which the respective kinematic 

dimensions are 0, just as the ones for which these have extreme values. 

Figures 1.3 to 1.5 present the variation waves for displacement values, speed 

and acceleration for the axial normal gear piston for the marine engine. 

 

 

Figure 1.3: The piston displacement variation depending on the crank 

angle 
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Figure 1.4: The variation of piston speed depending on the crank angle  
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Figure 1.5: The variation of piston acceleration depending on the crank 

angle 
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1.1.2. Kinetics of the gear with main reciprocating rod and secondary reciprocating 

rods 

 

 The mechanism is specific for engines having at least two shaft lines and a 

single crank shaft, as well as engine with de star shape cylinder deployment. In the 

same time, the gear can be used for V shaped cylinder configuration when it has 

ascertained that the reciprocating rods side articulation mounted on the same twist can 

lead to higher lengths and a bigger dimension of the main engine. In the following part 

only the kinetics of the piston with a secondary reciprocating rod will be discussed, 

because the main reciprocating rod is a part of a normal mechanism. The gear with 

main reciprocating rod and secondary reciprocating rods are being described in the 1.6 

figure. The main notations used are: 

 γ – the angle between the axis of the main cylinder and the one of the 

secondary cylinder (the first vertical position has been presented, in the γ position in 

order to make the symmetric multiplying process much easier for a W or star shaped 

mechanism); 

 γ1 – the super positioning angle for the secondary reciprocating rod; 

 θ1 – the crank rotation angle on the axis of the secondary cylinder; 

 β1 – the leaning angle of the secondary reciprocating rod; 

 r – the distance from the crankshaft crankpin axis of to the secondary 

reciprocating rod; 

 l – secondary reciprocating rod length; 

 yp – articulated piston displacement with the secondary reciprocating rod 

facing the lower dead center point Pi1 on the secondary cylinder axis. 
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Table 1.1. Analytical formulas of kinematic dimensions of the normal axial engine gear 

Component Dimensions Exact formula Simplified formula   for 0 
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Extreme values 
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Figure 1.6: Calculus kinematic diagram for the gear with main reciprocating rod and secondary reciprocating rods
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Piston internal combustion marine engines have a particular feature consisting 

in the transformation of the alternative translation motion of the piston, under the gas 

pressure generated by the burning process of fuel in the cylinders, in crank shaft a 

motion, through the mean of the crank gear. 

If the main reciprocating rod is part of a normal type gear (reciprocating rod – 

crank) that has known kinematic characteristics, as mentioned in the previous 

subchapter, then the secondary reciprocating rod acts on the crank through the main 

reciprocating rod being part of a gear which differs from a kinematic point of view, 

having in mind the normal motion laws. Thus the calculus algorithm for this 

mechanism with a main reciprocating rod and a secondary reciprocating rod starts 

proceeds with mentioning the value of coefficient y1 (as mentioned in the 1.1.1 

subchapter): 

1111
cos)cos(cos  lrRyOP  (1.15) 

 

For which: 
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 (1.16) 

 

The value for β is being given form the first set of equations (1.1), and the 

leaning angle of the secondary reciprocating rod β1, according with [17], is being 

given by the following formula: 
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In the (1.16) formula the following substitution are successively made: θ1 = 0 

and θ1 = π. For these values the values for OPi1 and OPi2 (the distances from the 

center of the rotation axis to the inner dead center and the distance to the outer dead 

center) can be calculated. 

By particularizing the angles that are specified in the (1.15) formula, β = β0 

and β1 = β10 for the first case and β = β0
’ and β1 = β10

’ for the second case, as well as 

developing the trigonometrical series functions from the above mentioned formulas 

[4], [5], we can obtain the values for the following distances: 
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 (1.19) 

 

In this manner we can express the analytical formulas for the engine gear that 

has a main reciprocating rod and secondary reciprocating rods, in which harmonic of 

any order can be found generated by de cosine and sine functions as well: 
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Thus, if for the normal mechanism piston the expression from the 1.1 table is 

being maintained,  for the displacement of the secondary gear a more complex 

formula will be obtained which is in fact specific for a offset normal gear [17]. 

The harmonic coefficients for the secondary gear piston displacement 

expressed in a useful manner for a practical calculus will be: 
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 As it was highlighted in [5] when projecting a gear with main and secondary 

reciprocating rods it is mandatory that the similarity condition to be maintained for the 
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compression ratio ε1 from the secondary cylinder related with the compression ratio 

form the main cylinder ε, especially when the dimensions of these cylinders and 

pistons are identical. First of all the value of S1, secondary piston stroke, is being 

calculated, as well as Sc1, the height of the combustion chamber from the secondary 

cylinder (which is considered as being included in the cylinder head): 
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In the above formulas Δ and Δ1 are calculated with: 
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The similarity condition for the compression ratio for the two cylinders thus 

becomes: 
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 from which, under the condition: 

rlL   (1.25) 

 

 mandatory for V and W engine configuration, the trigonometrical equation 

will be generated: 

02cos2sincossin  edcba  (1.26) 
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where the coefficients are given by the formulas: 
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with the following notation: 

2


 tgx  (1.28) 

  

 The equation (1.26) becomes an equation in x constant: 

0)()2(2)(2)2(2)3( 234  edbxcaxedxcaxedb  (1.29) 

  

 that has a solution which subsequently leads to the values of the ψ angle, thus 

γ1, more specific the angle at which the secondary reciprocating rod has to be fixed in 

order to ensure an equality between compression ratios; from these solutions the one 

that satisfies the condition ψ = 5 ± 100.  

 For star shape configuration cylinder engines the basic condition is φ = 0 in the 

(1.22) and (1.23) equations and this results in: 
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 Finally, keeping in mind the mass features, generally the radius r sets the value 

for the length of the secondary reciprocating rod. The logical diagram of the calculus 

logarithm is being presented in the 1.7 figure. It can be noticed that the mechanism for 

the engines with a V configuration and neighboring reciprocating rods has an identical 



 

30 
 

kinematic feature for the secondary gear similar with the main gear, this being a 

practical solution for the engines used in the marine domain. 

  

1.1.3. The kinematics of engine gears with opposite displayed pistons 

 The engines with opposite displayed pistons represent a special category which 

has not yet been studied in the technical literature [18] and can be found in many slow 

marine engines. The kinematic diagram for the engine gear with opposite pistons 

includes two gears with two different gears but each one of them acts on one crank 

shaft in the case of engines with two different crank shafts (as shown in the 1.8 figure) 

or both of them acting on the same crank shaft (as shown in the 1.9 figure). 

 In order to obtain an even distribution of gases one of the cranks has to be 

fitted offset facing the second one at a φ angle comparing with the positions at 00 and 

1800; thus the piston covers the evacuation chambers and is in advance, while the 

piston that closes the evacuation chambers is being delayed. The optimal scavenging 

value for the advance angle φ is usually in the 10 – 150 RAC clearance.   

 For engines with opposite pistons included in the first category, for a crank 

angle θ1 corresponding with an advance piston depending on the delaying gear, the 

following formula will be applied: 


21

 (1.31) 

 

 thus φ defines the crank position in advance towards the dead center of the 

most close moment in which the delayed piston is in p.m.i. The most important part is 

the calculus for the variable distance y between the two pistons. 

 Keeping in mind that the two values are identical the chosen calculus 

hypothesis states the fact the two pistons have a flat head and it can be noticed that the 

distance y is the one between the articulations between pistons and reciprocating rods, 

this hypothesis stands at the base of the calculation method of kinematic dimensions 

of normal gear with a single piston. Thus for the distances y between P1 and P2 the 

following formula will result: 
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Figure 1.7: Logical diagram for the kinematic model of the gear fitted with main 

reciprocating rod and secondary reciprocating rods 
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Figure 1.8: Kinematic calculus diagram for engines fitted with opposite pistons 

and two crank shafts 

 

In the above figure yp1  and yp2 are the displacements for the two pistons facing 

the corresponding inner dead centers and they can be calculated by applying the 

formulas presented in the 1.1 table, while y0 is the distance between the fixed positions 

of those two inner dead center points which are in fact the height of the combustion 

space, except two situations. 

Thus the following formula will be obtained: 
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For the practical case of limiting the first two harmonic coefficients the 

following formulas will be obtained: 
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Figure 1.9: Kinematic calculus diagram for engines fitted with opposite pistons 

and one crank shaft 

In which the ratios between radius and elongations of the two reciprocating 

rods have been inserted in the general hypothesis of some gears with generic different 

dimensions: 
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With these harmonic coefficients the so-called overall piston displacement, y, 

can be rewritten as: 
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But this formula is identical with the formula for the displacement of a 

fictional similar gear, normally offset, with the radius and crank angle R1 and θ, with 

an angular speed noted with ω1, this being a gear that has an piston speed and a piston 

acceleration equal with: 
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In the formulas above the initial stages have been inserted as: 
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The extreme values from the (1.36) formula are of most interest and they can 

be obtained by canceling the derivative of these formula which leads to an algebraic 

four degree equation in the following unknown: 

2

1


 tgx  (1.39) 

 

and has the same type as the (1.29) equation, such as: 
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with the following coefficients: 
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for which: 
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For the potential four solutions of the (1.40) equation the maximum value are 

being obtained for the value in the (1.36) equation, ymax 1,2, as well as the minimum 

ones ymin 1,2. These values can be also deducted from the kinematic analysis of the 

gears presented in the 1.8 and 1.9 figures and have approximate values sufficient for a 

practical calculus as stated in [4] and [5]: 
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for the first type of gear; 
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for the second type of gear; 

where ya and ye are notations for the heights of admission and evacuation 

chambers. 

Identical consideration can be taken into account for the engines with opposite 

pistons included in the secondary category, with a single crank case. From the kinetic 

analysis from the 1.9 figure the following equations are resulting: 
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 as well as: 
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These formulas are analogue for the (1.31) and (1.32) equations. The 

displacement expressed by the (1.33) formula will have a similar expression as the one 

in the (1.36) formula with the following coefficients: 
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with the following values for the auxiliary angles: 
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For the compression ratios formulas analogue with the ones included in the 

(1.45) are being deducted. 

A particular case in the study of kinetic study of opposite pistons engines is 

being represented by the lack of angular offset (φ = 0) and this is a situation in which 

the b1 and b2 coefficients are being canceled, and the displacement of pistons is being 

expressed by the (1.36) formula, becoming analogue with the one with a normal axis 

gear. 

In the 1.10 figure the general aspect of piston displacement overall variation is 

being described as in (1.36) keeping in mind the quality of extreme points. 

The 1.11 figure is a representation of a DOXFORD 58JS3 marine engine gear 

with three in-line cylinders, a two stroke functioning cycle, as well as opposite pistons 

that are driving a single crank shaft, this representing the variation of dynamic 

dimensions for similar gears. 

The main engine noted has the following technical data: 

- Rotation speed: n = 222 rpm; 

- Piston diameters: D = 580 mm; 

- Crank radius for the gear driving the first piston: R1 = 440 mm; 

- Crank radius for the gear driving the second piston: R2 = 170 mm; 

- The reciprocating rod length at the first piston: L1 = 1520 mm; 

- The reciprocating rod length at the second piston: L2 = 1100 mm; 

- Angular offset: φ = 0; 

- The minimum distance between pistons: y0 = 34 mm; 

- The height of scavenging (admission) chambers: ya = 124 mm; 

- The height of evacuation chambers: y2 = 102 mm; 
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Figure 1.10: The piston overall displacement variation 
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Figure 1.11: The gear diagram for the DOXFORD 58JS3 marine engine and 

kinematic dimensions for it
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1.2 Engine gear dynamics 

 

Following the kinematic analysis of the engine gear the speeds, displacements 

and accelerations for their components have successively resulted. These values allow 

the analysis and the calculation for forces and moments that drive these components. 

 

1.2.1. The dynamic model of the engine gear 

In order to establish the forces and momentum that drive in the elements and 

the couples of engine gears we have to adopt a suitable dynamic model for it as it is 

suggested in the 1.12 figure. 

 

Figure 1.12: Dynamic model for the engine gear 
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 The model is being based on the meshing of included elements in the engine 

gear and mass concentration of these ones in characteristic points. Thus ma stands for 

the sum of masses with an alternative motion, while mr stand for the sum of masses 

with a rotation motion and mcg stands for the sum of masses for the counterweights 

fitted at a φcg angle facing the corner axis (figure 1.13). the values for these 

concentrated masses are expressed using the formula: 

bapa
mmm   (1.50) 

 

 

Figure 1.13: The elbow of the crank shaft fitted with counterweights  

 

All this weight is being concentrated in the articulation of the piston fitted with 

a nut (or in the draw bar of the piston fitted with the nut of the crosshead gear in the 

case of marine two stroke slow engines), in which mp is the mass of the piston group 

that includes the mass of the piston, the mass of piston rings and the mass of the piston 

nut in the case of four stroke engines, while in the case of two stroke marine engine 

adds the mass of the crosshead system and piston draw bar, while the mba is the mass 

of the reciprocating rod facing the piston which has an alternative motion. 

The value of mr is given by the formula: 
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babmmr
mmmm  2  (1.51) 

 

where mm is the crank mass, while mbr’ mass of the bracket facing the crankpin 

given by the following formula: 

R
mm b

bbm


  (1.52) 

 

mb
’ is the effective mas for the bracket and ρb is the ordinate corresponding the 

weight center of the bracket, while mb is the reciprocating rod mass facing the 

crankpin which has a rotation motion as well as the crankpin. In order to mash the 

reciprocating rod in those two concentrated masses in P and M points the following 

formulas have been applied: 
















b

p

br

b

m

ba

m
L

L
m

m
L

L
m

 (1.53) 

 

The above formulas are deducted from the conditions of dynamic equivalence 

[4], [11], [14] and [17] applied for a real reciprocating rod that has a mb and the 

meshed in two masses, the distances Lm and Lp are extracted from the 1.1 figure. In the 

case of the gear fitted with main reciprocating rod and secondary reciprocating rods 

these masses are reduced and can be calculated by applying the formulas [4]: 

  

  

























2

1

2

1

1cos
)1(

1cos
)1(

1

1

i

p

b

p

bbr

i

p

b

m

bba

L

irL

l

l
mi

L

L
mm

L

ir

l

l
mi

L

L
mm

 (1.54) 

 

where mb1, lp and lm are dimensions corresponding with the secondary 

reciprocating rods (as shown in the 1.6 figure). 
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According with the 1.12 figure in the dynamic model proposed we are going to 

use the following reference systems: Oxyz – the reference Cartesian coordinate system 

which is straight and fixed, associated with the still positions of the engine; Pxpypzp  - 

the Cartesian reference system, straight, mobile, associated with the piston (or 

crosshead system for slow marine engines); Mxbybzb  - the Cartesian reference system, 

straight, mobile associated with the crank; Mcgxcgycgzcg  - the Cartesian reference 

system, straight, mobile associated with the counterweights. 

Keeping in mind the previous observations it has to be mentioned that the 

forces and moments driving with the engine drive, as well as the specification that the 

following vectors have been introduced 𝑖, 𝑗, 𝑘⃗⃗ corresponding with the axes Ox, Oy and 

Oz: 

- Inertia force of masses with a rotation motion: 

 (1.55) 

 

 with an being the normal acceleration of the drive (as shown in the 1.1 table): 

 (1.56) 

 

 while the angular speed can also be written as a vectorial formula: 

ω = ωk (1.57) 

- Inertia force for counterweights: 

 (1.58) 

 

 where the normal acceleration of the counterweights is given by the formula: 

 (1.59) 

 

- Inertia force of masses in an alternative motion: 

𝐹𝑎 =  − 𝑚𝑎𝑎𝑝 (1.60) 
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with: 

 (1.61) 

 

 in which the piston acceleration noted with ap, is being given by the third 

formula from the (1.4) or in harmonic components, as noted in the 1.1 table. 

- Inertia correcting moment [11], [14], [17]: 

∆𝑀𝑖𝑏𝑡 = (𝑖𝑏
2 −  𝑖𝑏𝑒

2 )𝑚𝑏𝜀𝑏 =  ∆𝐽𝑏𝐺𝑏𝜀𝑏  (1.62) 

 

 where ib is the reciprocating rod gyration radius, ibe is the gyration radius for a 

two equivalent mass system calculated facing the reciprocating rod mass center Gb (as 

shown in the 1.1 figure), ΔJbGb is the angular correction for the reciprocating rod 

inertia moment facing the same point; thus the angular acceleration of the 

reciprocating rod has the formula given in the (1.4) equations, or the following 

vectorial formula: 

 (1.63) 

 

- Mass for components in rotational motion: 

𝐺𝑟 = (𝑚𝑟 +  𝑚𝑐𝑔)𝑔 (1.64) 

 

- Mass for components in translation motion: 

𝐺𝑎 = 𝑚𝑎𝑔 (1.65) 

 

- Gas pressure force acting on the piston head: 

 (1.66) 

 

 Gas pressure force will be calculated by applying the following formula: 

 
44

22 D
p

D
ppF

gcartp





  (1.67) 

 



 

46 
 

 Gas pressure inside the cylinder is variable as a function the rotation angle p = 

p(θ) (as in [3], chapter [5]) and pcart as the counter-pressure coming from the engine 

case. 

- Gas pressure that acts on the piston head: 

𝐹𝑝 = 𝐹𝑝𝑗𝑝 =  𝑝𝑔
𝜋𝐷2

4
𝑗𝑝  (1.68) 

 

- Total force acting on the P articulation: 

𝐹 =  −𝐹𝑝 +  𝐹𝑎 +  𝐺𝑎 = 𝐹𝑗 = (−𝑝𝑔
𝜋𝐷2

4
− 𝑚𝑎𝑎𝑝 −  𝑚𝑎𝑔) 𝑗𝑝 (1.69) 

 

- The components of F on the axis: 

F = N + B = Ni + Bjb  (1.70) 

 

 with the following values: 














cos

tan

F
B

FN

 (1.71) 

 

- Reaction force inside the stay of the reciprocating rod: 

𝑅1𝑝𝑏 = 𝐵 − (𝐹𝑏𝑎 + 𝐺𝑏𝑎) =  
𝐹𝑗𝑏

𝑐𝑜𝑠𝛽
− (− 𝑚𝑏𝑎𝑎𝑝 −  𝑚𝑏𝑎𝑔)𝑗 =  𝑅1𝑝𝑏𝑥𝑏𝑖𝑏 +

 𝑅1𝑝𝑏𝑦𝑏𝑗𝑏 = 𝑅1𝑝𝑏𝑥𝑏𝑖 + 𝑅1𝑝𝑏𝑦𝑏𝑗  (1.72) 

 

 where the following vectorial relations have been used: 

𝑗 = 𝑖𝑏𝑠𝑖𝑛𝛽 +  𝑗𝑏𝑐𝑜𝑠𝛽    

 (1.73) 

 

 in the above formulas the Oxyz components are: 
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





























gmam
D

pR

gmam
D

pR

bapbagl

bapbagl

ypb

xpb

4

tan
4

2

2

 (1.74) 

 

 from which the geometrical place for the Rlpb peak vector describes a curve 

called the polar diagram for the liner included in the reciprocating rod bracket, 

expressed in polar coordinates through the module and angular pole: 














xpb

ypb

pb

ypbxpbpb

l

l

l

lll

R

R

RRR

arctan

22

 (1.75) 

  

 In an analog manner the components facing the Mxbybzb are expressed by: 











coscos

sinsin

gmamBR

gmamR

bapbal

bapbal

bypb

bxpb

 (1.76) 

  

 with the possibility of drawing the polar diagram depending on the entire 

system. 

- Crankpin force: 

 (1.77) 

 

 In the above formula we can apply the following correlation: 

𝑗𝑏 = −𝑖𝑚 sin(𝜃 +  𝛽) + 𝑗𝑚 cos(𝜃 +  𝛽) 

 (1.78) 

𝑗𝑚 = 𝑖𝑏 sin(𝜃 +  𝛽) +  𝑗𝑏 cos(𝜃 +  𝛽) 

𝑗 = 𝑖𝑏 sin 𝛽 + 𝑗𝑏 cos 𝛽) 
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 The values for the components facing the axis are: 

 

 










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brbrMlm
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 (1.79) 

 

 Further one the module and the polar angle can be determined: 











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 (1.80) 

  

 In the reference system attached to the reciprocating rod the coordinated will 

be: 

 

 




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 (1.81) 

 

- The force acting on the crank in the M point is: 

𝑅𝑚 = 𝑅𝑙𝑚 + 𝐹𝑚𝑟 + 𝐺𝑚 = 𝑇𝑀𝑖𝑚 +  𝑚𝑚𝑔𝑠𝑖𝑛𝜃𝑖𝑚 +  𝑍𝑀𝑗𝑚 − 𝑚𝑚𝑔𝑐𝑜𝑠𝜃𝑗𝑚 +

 𝑚𝑚𝑅𝜔2𝑗𝑚 =  𝑇𝑖𝑚 +  𝑍𝑗𝑚 (1.82) 

  

 Where Fmr and Gm are inertia forces and gravity forces acting on the crank. 

The components are: 
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 (1.83) 
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 The above formula is being used to demonstrate the polar configuration for the 

crankpin. 

- The force acting in the thrust bearing: 

𝑅𝑙𝑝 =  𝑅𝑙𝑝𝑥𝑖 +  𝑅𝑙𝑝𝑦𝑗 =  𝑅𝑙𝑝𝑥𝑖𝑚 + 𝑅𝑙𝑝𝑦𝑗𝑚 (1.84) 

  

 having: 
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 (1.85) 

 

 resulting that: 

xp

yp

pypxpp

l

l

llll

R

R
RRR arctan;22   (1.86) 

  

 and these formulas sit at the base of the polar configuration of the thrust 

bearing. 

- The active motor moment is being defined by the formula: 

M = Mk = TRk  (1.87) 

  

- On the fixed parts of the engine the following forces will act: 

o The overturning engine moment (roll) 

Mras = Mrask  (1.88) 

  

 in which: 
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 (1.89) 
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- The pressure force of gasses acting on the piston head: 

𝐹𝑃
′ =  𝐹𝑃

′ 𝑗 (1.90) 

 with: 

𝐹𝑃
′ =  𝑝𝑔

𝜋𝐷2

4
 (1.91) 

  

- The vertical force acting on the crankpin: 
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 (1.92) 

  

- The vertical force acting on the engine support: 

yy lpppost
RFR   (1.93) 

 

- The normal components acting on the cylinder fender (or the crosshead 

slider, for the two stroke engine): 












 tan

4

2

gmam
D

pN
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 (1.94) 

 

- The horizontal component acting on the crankpin: 

 
cgcgcgrapaglp

mRmtggmam
D

pR
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
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
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2

 (1.95) 

 

- The horizontal component acting on the engine support: 

 cgcgcgrxlpxpost mRmRNR  sinsin 22
 (1.96) 

 It has to mentioned the forces and moments previously define are, in fact, 

periodical functions with general coordinates that can be developed in Fourier series 

(as in presented in 12.2.3 and 12.2.24 paragraphs). 
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 Thus, the gas pressure from the cylinder hast the following series development 

depending on the θ coordinate: 

     



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cossincos
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kk

 (1.97) 

  

 for the above series the medium value is: 

  
cT

c
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T

p
0

1
 (1.98) 

 

 while the harmonic coefficients apk and bpk, the amplitudes pk and the initial 

phases φp are given by the following formulas: 
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 (1.99) 

  

 In these relations Tc represents the periodical for the motor time: 

Tc = τπ = 2π – for two stroke engines    

Tc = τπ = 4π – for four stroke engines  (1.100) 

 

 Thus, by developing all the other forces in series (the ones in 1.97) developed 

in the engine gear will can be developed in a similar Fourier series. 

 In the previous considerations the real couples haven’t been taken into 

account, but inside of them friction forces can appear and clearances exist and all of 

them lead to the so-called cylinder run-out and this is generated by the run-out 

between the couple cylinder-piston, as well as the changes in the reactions occurring 

in bearings, due to changes in value for the N force, as well as the modification of al 
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chain reactions in bearings and the lubricating mode for these parts. In other words, 

for a two stroke engine the force acting in the engine gear diagram is being presented, 

as well as the diagram of forces that are acting on fixed parts of the engine, as shown 

in the 1.14 figure. 

 Table 1.2 the list of forces and moments acting on the components of the 

engine gear are being presented for the normal axis case of marine engines, these 

being very useful in a practical calculation based on the general formulas previously 

presented. 

 Further on the 1.15 figure represents the variations of these forces depending 

on the reciprocating rod angle, while the 1.16 figure contains the polar diagrams for 

the crankpins and thrust bearings for a 5K90MC type of marine engine with an overall 

power equal to 22850 kW and a nominal rotational speed equal to 94 rpm 

manufactured by the MAN B&W company. 

 This first chapter is being concluded with a specific observation consisting in 

the fact that the gear containing a main reciprocating rod and secondary reciprocating 

rods have tangential forces and total radial forces Tt and Zt that are being obtained by 

adding up corresponding forces for the two gears, the main and secondary ones 

keeping in mind the angular off-set γ and the mass mbr from the 1.54 set of formulas. 
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Figure 1.14: The force acting on the engine gear diagram 



 

54 
 

 

Figure 1.15: The reciprocating rod angular variation and the monocylindrical 

engine moment for the MAN B&W 5K90MC marine engine 

 



 

55 
 

 

Figure 1.16: Polar diagrams for crankpins of the MAN B&W 5K90MC marine 

engine: a – for the crankpin, b – for the end thrust bearing, c – for the 

intermediary crankpins 

 

Table 1.2: Forces and moments acting on marine engine components 

No. Name Calculus formula 

 

1 

 

Gas pressure forces     F A p p
D

pp p cart  



2

4
 

2 Inertia for piston 

assembly 
F m apa p p   
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3 Inertia of reciprocating 

rod that has an 

alternative motion 

F m aba ba p  

4 Inertia of reciprocating 

rod that has a rotation 

motion 

F m Rbr br  2
 

 

5 

 

Crank inertia 
 F m m Rm r m bm    2 2  

6 Inertia of masses in an 

alternative motion 
F m aa a p   

7 Inertia of masses in an 

rotation motion 
F m Rr r  2

 

8 The force applied by the 

articulating piston 
F F Fp a   

9 The normal force applied 

on the cylinder liner 
N F tan  

10 The force acting along 

the reciprocating rod 
B F cos  

11 Tangential force  T F sin cos    

12 Radial force  Z FM  cos cos    

13 Resulting force of the 

reciprocating rod acting 

on the thrust baring 

Z Z F Z m RM br M bm    2
 

14 Resulting force acting on 

the thrust baring 

    
R B F T Zm rb     

15 The resulting for inside 

the thurst bearing 

  
R B Flm rb    

16 Resulting force of the 

reciprocating rod acting 

on the crankpin 

  
R R Fp M m r   * 

17 The force acting on the 

engine support 
R F Rpost p ply

   

18 Tie piece tightening force  F Fs p  

19 Engine moment  M TR FR  sin cos    

20 Rolling moment   M N OP FR Mrãs     sin cos    

* In a real situation the resulting force acting on the crankpin is 

calculated by using two forces of such type calculated from the corners 

of the crankpin, as it has been shown in the 1.16 figure. 
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1.2.2 Crankshaft revolutionary motion evening 

 The previous remarks regarding the kinematics and the dynamics of the engine 

gear have been made on the base hypothesis having in its core the angular speed ω. In 

reality, due to the alternative motion of the pistons inside the cylinders and the 

variation of gas pressure, strong tangential forces occur, thus the engine momentum 

varies as well in a resultant manner (in the case of engines with more than one 

cylinders), symbolized as MΣ, its value being obtained by adding all the momentum M 

for each cylinder. As a consequence big differences can occur in the case of the MΣ  

coefficient total value and the one constant for the resistance momentum, noted by 

Mres = MΣ, this being opposite by the gear driven by the marine propulsion system (it 

being a propeller or a generator impeller). Figure 1.17 presents the variation of the 

poly cylindrical instant momentum for a MAN B&W 5K90MC type of main engine, 

indicating the medium value of MΣ in the range defined by the formula: 

T
T

i

T

i
M

M c


   

 (1.101)
 

 It can be noticed that it is similar with the value of the constant angular off-set 

between two successive launches. It also has to be mentioned that keeping this off-set 

at a constant value is, in fact, a basic hypothesis, as it will be shown in the following 

parts. 

 The mentioned differences imply corresponding variations of the kinetic 

energy of all moving masses, as well as the ones of the angular speed of the 

crankshaft. The unevenness degree of the motion can be defined as: 

 (1.102) 

 when the uneven functioning takes part in the (ωmax - ωmax) range of the angular 

speed of the crankshaft. The median speed of ω is calculated with formula: 

 
  




max min

2 30

n
rot / min

 (1.103) 

 


 

 
max min

2
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Figure 1.17: The variation of the ploy cylindrical engine momentum depending 

on the angle of the reciprocating rod for a MAN B&W 5K90MC marine engine 

 

In order to highlight the kinetic energies and the differences mentioned for the 

momentum we have to rely on the system with a degree of freedom of movement 

diagramed in the 1.18 figure. The kinetic energy of this kind of mechanism can be 

calculated with the following formula: 

𝐸𝑐 =  𝐸𝑐𝑚′ + 𝐸𝑐𝑏 + 𝐸𝑐𝑝 =  
1

2
𝐽𝑚′0 +  

1

2
𝑚𝑏 (𝑥𝐺𝑏

2 + 𝑦𝐺𝑏
2 ) +  

1

2
𝐽𝑏𝐺𝑏𝜔2 +

 
1

2
𝐽𝑚𝑝𝑦2 =  

1

2
𝜃2 [𝐽𝑚0 + 𝑚𝑏(𝑐1𝑏𝑥

2 + 𝑐1𝑏𝑦
2 ) +  𝐽𝑏𝐺𝑏𝑐 𝜔𝑏

2
+ 𝑚𝑝𝑐𝑤𝑝

2  ] (1.104) 

 

in the above formula Jm0 is the mechanical inertial moment for the crankpin, 

being reduced to the axis value, the rest of the elements being defined in the previous 

chapters. Thus, the following moments will be noted as: 
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 J J m c c J c m cm b bx by bGb b p w p
   


 


  0 1

2

1

2 2 2

  (1.105)
 

Practically that is the definition of the generalized inertia moment. In the 

process of developing the motion equation for the entire system with one degree of 

movement we need to define the centripetal stiffness moment as: 

 (1.106)  
 

C
dJ

d
m c c c c J c c m c cb bx bx by by

bGb b b p wp a p





   


 


  

1

2
1 2 1 2
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Figure 1.18: One degree of freedom mechanism diagram 

 

Thus the kinetic energy of the entire system can be written as: 

𝐸𝑐(𝜃) =  
1

2
 𝐽(𝜃)𝜃2 (1.107) 

 

Thus, the virtual mechanical work will be: 
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         L p A y M p A c Mp p wp
     

 (1.108)
 

 

From the above formula we can highlight the general force as: 

  (1.109) 

 

The motion equation for the entire system will be: 

𝐽(𝜃)𝜃 + 𝐶(𝜃)𝜃 = 𝑄 (1.110) 

 

By trans ponding this equation for the multidimensional system of the shaft 

line of a marine main engine this will become: 

𝐽𝑡𝜃 =  𝑀Σ −  𝑀𝑟𝑒𝑧 (1.111) 

 

In the equation above Jt is the total inertia momentum obtained by adding J0, 

the inertia momentum of all parts in motion reduced to the rotation axis, as well as Jv, 

the inertia momentum of the flywheel that uniforms the entire motion the last one 

being considered, at a first glimpse, as being much higher than the first inertia 

moment, thus: 

 
1

2

2J d M M dv rez
  

 (1.112) 

 

furthermore, by integration the inertia momentum of the flywheel can be 

obtained: 

J
A

v




 
2

  (1.113) 

 

 in the above figure the bellow term is the positive area from the 1.17 figure, 

this meaning, at a certain scale this is the energetic overlaps towards the main 

consumer. It can be observed that in the (1.111) equation a unilineal term has been 

canceled, but it will further developed in the next paragraphs. From the same situation 

 Q p A c Mp wp
  
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it can be noticed that the unevenness degree is being registered for the moment of the 

multi cylindrical engine by introducing the flywheel. 

 The simplifying procedures previously used can be canceled by using an exact 

analytic and graphic method [17] and by describing the energy depending on moment 

inertia diagram. The steps will be described in the following paragraphs: 

- The calculus of the inertia moment for motion masses facing the rotation 

axis. The formula for the total inertia moment is: 

vt
JJJ 

0
 (1.114) 

 

where the inertia moment J0 is: 

  
 cgflabrm

JJJJiJ
,0 0

 (1.115) 

 

in the above formula Jbr is the inertia moment for the reciprocating rod mass 

facing the crankpin (which has a rotation motion): 

2RmJ
brbr

  (1.116) 

 

Ja is the inertia moment for masses with an alternative motion, being reduced 

as a inertia moment facing the rotation axis, while  cgfl
J

,
is the sum of all inertia 

moments for coupling flanges in several areas of the crankshaft, of all counterweights 

and other elements. For Jm0 the following formula applies: 

000
2

bpmm
JJJJ


  (1.117) 

  

where the inertia moment for the thrust bearing is being reduced to the rotation 

axis, being: 

2

0
RmJJ

mmm
  (1.118) 

 

meanwhile Jb0 is the bracket moment facing the rotation axis, which is being 

calculated using analytical formulas or by meshing the shape of the bracket in far 
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more simpler areas [5], [14], [17]. The only unsolved unknown remains the one of Ja; 

for this the mass ma kinetic energy preservation condition will be applied as: 

2

2

1

2

1


apa
Jwm  (1.119) 

In the above formula wp can be equaled with the formula specified in the 1.1 

table, obtaining the following equation: 
















 

11
0

2 cos
2

1

k
aa

k
kaa k

JJkbbRmJ  (1.120) 

 

in the same time the bk coefficients in the above formula and the harmonic 

development are given by the (1.119) formula and the harmonic coefficients from the 

formula for the piston motion mentioned in the (1.14) equation. Thus, the mean value 

for the inertia moment, as its harmonic order component k will have the value given 

by the formula: 

 






















 


kbRmJ

RmRmaaRmbRmJ

kaa

aaaaa

k
cos

2

1

2

1

4
1

2

1
4

2

1

2

1

2

2

2

22

2

2

1

2

0

2

 (1.121) 

 

The first value can be found in [5], [12] and [17]; the las values can be 

substituted for the values of k that are satisfying the following condition: 

k = π  - for two stroke engines;   

k = π/2 for four stroke engines (1.22); 

 

the values will be multiplied for the i number of cylinders (as shown in the 

1.19 figure). 

- Mechanical work variation calculus developed in an engine cycle. 

Mechanical work cycle depending on the θ angle is being calculate with 

the following formula: 
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         


dMdyFdVpL
ppp

000

 (1.123) 

 

having a Mp(θ) instantaneous moment for the gas pressure: 

   
 






cos

sin
RFM

pp
 (1.124) 

 

and this equation is analogue with the no. 19 equation from the 1.2 table. In a 

Δθ calculus rate is being applied and by dividing the period 0 - Tc in a 
c

Tn
0

equidistant intervals, the following iterative calculus formula is being obtained: 

   
   

0

1

1
1,

2
nj

MM
LL jpjp

jj



 


 (1.125) 

 

The mechanical work cumulated in a cycle rate is being shown in the 1.20a 

figure, by placing the variation curve for the mono cylindrical mechanical work 

(which is linear and resistant, because of the moment is constant); at the ending of a 

cycle the two values are constant. By summing them up analytical or graphical the 

same variations can be described in the same manner for the poly cylindrical engine 

(as shown in the 1.20b figure); with Ls symbolizing the additional mechanical work 

(excess mechanical work). 

- Generating the inertia energy-moment diagrams. The 1.9 figure describes 

the means of generating this diagram, which also presents the mean of the 

energy is being transferred between the crankshaft and the engine parts 

having an alternative motion. For this, in an analytical or graphical manner, 

the value of θ is being eliminated between the mathematical functions LSΣ 

= LSΣ (θ) and Ja = Ja (θ), this way generating the LSΣ = LSΣ (Ja) diagram 

through the x coordinating points. 

- The calculus for the flywheel inertia momentum. For this we have to 

consider that the value of Jv starts from the origin of the reference system 

described in the 1.19 figure, passes through the Ox secant (the value of x 
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on the inertia energy-moment diagram), obtaining in this manner the value 

of the φx angle: 

 

Figure 1.19: Diagrams for the flywheel inertia moment calculus 

 

2

2

0

2
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1
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c

x

s

x

J

J

J

E

J

EL
xx 









 (1.126) 

  

 From the above formula the following can be concluded: 

xx
 tan2  (1.127) 

 

 By replacing the values of the angular speeds in the (1.126) formula in the case 

of the minimum and maximum values corresponding to φmin and φmax generated by the 

tangent lines generated from the origin 0 to the extreme points of the LSΣ = LSΣ (Ja) 
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curve with the abscise axis, afterwards by introducing these values in the (1.102) and 

(1.103) equations the following effective values will be obtained: 





















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 
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
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













 



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



2

min

2
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2
1

2
arctan

2
1

2
arctan

 (1.128) 

 

Figure 1.20: Mechanical work variation generated in an engine cycle depending 

on the crank rod: a – single cylinder engine, b – poly cylinder engine 

 

 Knowing the values of these angles the tangents for the previous chapter can 

be generated and at the intersection between them the 0 origin of the system lays 

down, used for reading at a certain scale the inertia moment Jv for the flywheel. 

 By applying on of the methods above we can obtain the value for the flywheel 

inertia moment, also by applying the calculus diagram presented in the 1.21. figure. 

These diagrams are also used in order to calculate the diameter of the flywheel with 

the formula: 

3

4

bh

J
D v

v


  (1.129) 

 

 In the mentioned figure are also being pointed out the values and dimensions 

for the Sulzer 6RND90 marine engine. 



 

67 
 

 It has been mentioned at the beginning of the subchapter that the flywheel 

radius is dropping in value if the number of cylinders raises, and this is also described 

in a graphical manner in the 1.22 figure. For these, the unevenness degree of the 

crankshaft rotation motion varies in the range 1/20 – 1/50 for slow speed propulsion 

engine and 1/100 – 1/300 for auxiliary engines. 

 

Figure 1.20: The variation range for the diameter and the inertia moment of the 

flywheel depending upon the number of cylinders 
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Figure 1.21: The calculus diagram for the flywheel diameter and the fitting 

solution for the flywheel for a marine main engine Sulzer 6RND90 type 
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Figure 1.6: Kinematic calculus diagram for the gear fitted with main 

reciprocating rod and secondary reciprocating rods 
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2. MARINE ENGINES BALANCING 

 

An internal combustion marine engine is considered balanced when the 

reactions in its supports are dimensional constant, as well as direction and orientation. 

Due to the fact that this condition can’t be satisfied in the case of a heat engine we will 

further examine the causes that are generating the lack of balancing in the marine 

engine. 

 

2.1 Causes generating the lack of balance in marine engines 

In order to analyze the way each engine gear force category act on the 

reactions from the engine supports we will research on the unbalance generated by 

each and every one of these forces, as shown in the 1.14 figure. the 1.2.1 paragraph 

showed the action of forces acting on the fixed, as well as the mobile one for a single 

cylinder engine. 

Further on, we will analyze the pressure forces effect as well as the masses 

inertia effect for the rolling occurrence, for which they are dimensional equal. 

Thus, the total rolling momentum Mras is being defined in the 1.2.1 paragraph, 

being generated by the components Mras p and Mras a, while the total momentum M is 

being decomposed in the main dimensions Mp and Ma in the following manner: 

ap rãsrãsrãs
MMM   (2.1) 

 

and: 

ap
MMM    (2.2) 

 

For each component the following equivalents apply: 

arãsprãs
MMMM

ap
 ;  (2.3) 
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having all these in mind, as a general rule, if the engine is considered as being 

a single cylinder one it will be unbalanced and the main components that generate 

partial momentum act on different construction engine elements. Regarding the inertia 

of moving masses in rotation motion symbolized as Fr, even if it has a constant value 

it is variable in its direction and orientation but it will be transferred to the engine 

supports and will the generate the so called quiver motion.  

If the engine has more than one cylinders than moments will occur that will 

unbalance the engine and they are generated by the unbalancing forces that act in 

different plan, spatial speaking. The force diagram and the momentum diagram for the 

poly cylindrical engine is being presented in the 2.1 figure. The engine is to be 

considered normal axial, with identical cylinders and displayed at an even distance, 

this meaning that: 

1,1.,
1




njconstaaa
jj

 (2.4) 

 

where aj is the distance between the cylinder j-order axis, being normal on the 

Oxyz axis and the Oz axis is identical with the rotation axis, while Oy is parallel with 

the cylinder axis and Ox is perpendicular on the rotation axis. Two neighboring 

cylinders gears have been taken into consideration: j and j + 1. 

The masses inertia forces in rotation motion for each cylinder Fri is being 

decompound in the following elements: 











ijFY

FX

jrr

jrr

jj

jj

,1,cos

sin
 (2.5) 

 



 

75 
 

 

Figure 2.1: Inertia forces diagram with two neighboring engine gears which are 

projected on the Oxyz axis system 

 

in the above formulas Fri has the following deducted expression (from the 

formulas 1.55 and 1.56): 

ijconstRmF
rr j

,1.,2   (2.6) 

according with the previous specifications. 

The mass inertia of forces having a translation motion, Fai are being deducted 

from the (1.60) equation as well from the 1.1 table and they have the following 

expressions: 

ijamF
jj paa

,1,   (2.7) 

 

in the above formula ap has the value extracted from the 1.1 table, thus: 





  



1
2

2

1

2 2cos)2(cos
k

jkjp
kakaRa

j

 (2.8) 

 

the coefficients a1 and a2k are being given by the (1.14) formula. 
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The Fai force is being projected on the Oxyz axis system and generates the 

following components: 











ijFY

X

jj

j

aa

a

,1,

0

 (2.9) 

 

In the above statements it has been assumed that ma and mr masses are 

identical for all mechanisms, this being considered identical. 
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as for two of the momentum: 

xxjjjj arj

i

j
a

i

j
jrj

i

j
arx

MMaYaYaYYM  
 111

)(  (2.11) 

 

these are being displayed around the Ox axis, and it is called a gallop 

momentum (pitch), that generates a vibration around the Oxy plan and has two main 

components: Mrx – gallop momentum for inertia of masses with a rotation motion and 

Max – gallop momentum for inertia if masses with an alternative motion, as well as the 

momentum equal with: 

jj r

i

j
jry

MaXM 
1

 (2.12) 

 

 

This final moment is called the serpentine momentum (gyration momentum) 

and generated a quivering motion for the engine in the Oxz plan, thus it has an 

effective gallop component for the inertia forces of masses in rotation motion.  
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In the same time the rollover moments that act in each plan of the engine carry 

on. By adding them these moments generate a single total moment acting in the xOy 

plan called the rolling momentum, calculated with following formula: 

 



i

j
rãsrãs

i

j
rãsz

jajpj
MMMM

11

),(  (2.13) 

  

This momentum includes the rolling momentum of all inertia for masses with a  

alternative motion and all pressure forces generated by gases, according with the (2.1) 

formula. In the previous formulas i represents the total number of cylinders. 

It can be concluded that from the (2.10) and (2.11) that the resulting inertia 

forces and the rolling momentum are not dependent on the distance between cylinders. 

On the other hand the gallop moments and the serpentine moments are dependent on 

these distances. That is why the balancing process can be studied on the bases of two 

type of loads: the inertia forces and the rolling momentum; the inertia forces 

momentum (the gallop and serpentine momentum). 

These moments that generate engine unbalancing are called external 

momentum because these one act on the engine supports. On the other hand the force 

couple momentum that load the support crankpins are called internal momentum. In 

this manner it will be mentioned that the balancing process consists in the complete 

cancelation of all variable forces and momentum acting on the engine supports. Above 

all, there are two means of balancing: using some sort of balancing masses 

(counterweights) that have inertia forces that cancel the inertia forces of moving 

masses, as well as their momentum, or picking an optimal solution consisting in an 

optimal crankshaft, with the possibility of canceling the forces and momentum of 

inertia. Generally, an intermediary solution is being chosen that combines the two 

mentioned previously. 

 

2.2 Balancing the one single cylinder engine 

The observations made in the previous paragraph are used as a base to study 

the unbalancing phenomena that occur in the normal axis single cylinder which is 
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being generated by the Fr and Fa forces, as well as the rolling momentum Mras with its 

main components Mras p and Mras a, thus we will be analyzing the means of balancing 

these components at each turn in the following. 

 

2.2.1 Rotation masses inertia force balancing 

The no. 7 formula from the 1.2 table expresses the inertia of masses with a 

rotation motion; this force is being balanced by using two counterweights with a mer in 

the elongation of brackets (as shown in the 1.13 figure). Assuming that the force Fr 

acts on the symmetric plan of the elbow, we will consider that the two counterweight 

have even masses and that they will develop an inertia force that will balance Fr: 

ree
Fm

rr
2  (2.14) 

 

In the above formula exists two unknown values: the balancing mass mer and 

the distance from the mass center to the rotation axis ρer. If one of the condition is 

being applied it implies the other one. 

 

2.2.2 Balancing the inertia forces of masses with a translation motion 

The formula for the inertia is given by the no. 2 relation from the 1.2 table, 

while the formula for the piston acceleration is also given in the 1.2 table, thus mass 

inertia forces in translation motion for the one single cylindrical engine with a normal 

end axis has the following shape: 
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in the above formula, if we have in mind the value a1 = -1, the following 

notations have been made: 

 cos2

1
RmF aa  (2.16) 

 

and: 

   kkRamF
kaa k

2cos2
22

 (2.17) 

 

thus only 1st order harmonic persists as well as the superior even harmonics. 

In the initial momentum τ0 = 0, we will have a angular value θ = 00 RAC (the 

reciprocating rod is at the lower dead center), thus: 

2

2

2 )2(;
21

 kRamFRmF
kaaaa k

 (2.18) 

 

Having in mind the formulas from (1.14) the sign of the a2k coefficients can be 

set from the harmonic developed out of the piston deployment: 










ppk

pk
asign

k

,12,1

2,1
2

 (2.19) 

 

The observation from the (2.17) formula becomes the meaning of a initial 

phase by introducing an additional angle φ2k: 

     
kkakaa

kakRmkakRmF
k 22

2

2

2

2cos22cos2
2

  (2.20) 

 

and: 










ppk

pk
k

,12,0

2,
2  (2.21) 

 

Further one: 

 
kaa

akRmF
k 2

2

2
2

  (2.22) 
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and this allows to obtain the expression of the superior harmonic with an even 

order: 

 
kaa

kFF
kk 2

2cos
22

  (2.23) 

 

The last formula is not fixed because it can have the following vectorial 

meaning: it should be considered an applied vector on the O center, with a  constant 

value, equal with |Fa2k|; this vector will be spinning around the reciprocating rod 

orientation having an angular speed equal with 2kω; in the θ = 0 0RAC, when the 

reciprocating rod reaches the lower dead center point this vector will form an φ2k angle 

with the Oy axis (as in figure 2.2a); keeping in mind the usual sign convention [6], 

[11] and [17], in strict coordination with the sign of a2k, the module vectors |Fa1| and 

|Fa4k-1| will be on the same phase with the reciprocating rod when it is in the lower 

dead center; and the module vectors |Fa4k| will be faced on opposite position towards 

this; after the τ time period, in which the reciprocating rod generates the θ = ωπ and 

the vector surpasses a certain angle equal with 2kθ = 2kωτ, the vector projection on 

the Oy axis is |Fa2k|cos(2kθ + φ2k) representing the actual value of the module 

harmonic 2k in any given moment (as shown in the 2.2b figure). 

The |Fa2k|  mentioned vector can be balanced with an equal vector that has an 

opposite orientation, obtained by using a rotation mass with the same speed as the 

vector, but at a difference of 1800, having a mass center placed at a ρea2k towards the 

rotation axis. The balancing mass can be calculated with the following formula: 

k

e

ae
a

R
mm

ka

ka 2

*

2

2 
  (2.24) 

 

This value is being obtained by imposing the value of ρea2k. The main thing 

that has to be obtained by balancing the |Fa2k|cos(2kθ + φ2k) value and that how it is 

shown that it remains unbalanced by the component |Fa2k|sin(2kθ + φ2k), this leading 

to another vectorial interpretation (as shown in the 2.2c figure): thus |Fa2k| is the 

resultant of two vectors with a constant dimension and it is equal with |Fa2k|/2 and 
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they spin in opposite directions with an angular speed equal to 2kω and generate the 

φ2k, in other words - φ2k in the τ0 = 0 (θ = 0 0RAC); the two vectors are being balanced 

using two masses with the following dimension: 

*

22 2

1
kaka ee

mm   (2.25) 

 

the two masses are symmetric towards the cylinder axis and are spinning one 

depending on the other with an angular speed equal with 2kω; the normal projections 

on the cylinder axis for centrifugal inertia mass forces mea2k are canceling each other 

in a reciprocating manner. 

In the case of the ap acceleration we have to limit ourselves at the first two 

harmonics by applying the simplified formulas from the 1.1 table, thus we will obtain 

the order 1 harmonics for the mass inertia force that have an alternative motion (as 

mentioned in 2.16), or the 2nd order harmonics: 

 2cos2

2
RmF

aa  (2.26) 

 

In practice, in the case of the normal single cylindrical engine the balancing 

process is being limited to the firs two harmonics. The complete balancing diagram 

for the inertia forces is being drawn out from the [6], [10], [11] and [17] elements of 

references that will be listed at the end of this chapter. 
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Figure 2.2: The vectorial interpretation of inertia forces generated by the masses 

with an alternative motion 

 

2.2.3 Rolling momentum balancing of pressure forces generated by gasses and 

mass inertia forces with a translation motion 

The rolling-over momentum generated by the gas pressure has the following 

formula which has also been mentioned in the 1.2, no. 19 formula: 

 





cos

sin
RFM

pr‹s p
 (2.27) 

 

in the above formula Fp is given by the (1.124) formula by applying the (2.3) 

formula. 

The momentum is, in fact, a periodical function that depends on the θ rotation 

angle, the period being the one of the Tc cycle (as shown in 1.97), thus this hypothesis 

can be further developed by applying the analogue principles with a harmonic analysis 

for the gas pressure of the motor fluid (as shown in 1.97) in a Fourier series: 







1k

r‹sr‹sr‹s
kppp

MMM  (2.28) 

 

around the median value: 
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    dM
T

M
c

pp

T

r‹s

c

r‹s

0

1
 (2.29) 

  

 and the harmonic components with a k order have the following values: 

 
kkpkp pr‹sr‹s

kMM  cos   (2.30) 

 

having a module and a phase given by the relations (as it will be shown in the 

4.2 paragraph): 














k

k

k

kk
kp

p

p

p

pp
r‹s

Y

X

YXM

arctan

22

  (2.31) 

 

In the above formula the harmonic coefficients have the following formula: 

 

 




















c

kpk

c
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T

rãs

c

p

T

rãs

c

p

dkM
T

=Y

dkM
T

=X

0

0

sin
2

cos
2

 (2.32) 

 

From the above formula and the vectorial interpretation applied in the 2.3 

figure the projection of a spinning vector that has a module projected on the Oz 

rotation axis, with a kω, in the opposite orientation facing the crankshaft and forms an 

angle φpk with the rotation axis when the crank is in the lower dead center position. 
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Figure 2.3: Vectorial interpretation of the harmonic component with a k 

order for the roll moment generated by gas pressure 

  

Analog, by applying the corresponding formulas for the inertia of masses in 

alternative motion (as presented in 2.15) the formula for the rolling motion is being 

generated due to this force itself: 

 
M F R Mrãs a a rãs ak

k










sin

cos

 


1

 (2.33) 

 

For the harmonic component with a k order the following formula will apply: 

 
kkaka ar‹sr‹s

kMM  sin  (2.34) 

 

with a module and a phase given by de formula bellow: 

M m R b

k

k

rãs ak
a k

ak
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












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

2 2
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




, , , ,...

, , , ,...

 (2.35) 

 

the bk coefficients are being given by the following sets of formulas: 
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4213
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aaab

aab

aab

(2.36) 

 

The vectorial interpretation of the rolling moment generated by the inertia of 

masses with a translation motion is being presented in the 2.4 figure. the rolling 

momentum generated by the gasses pressure force depends on the engine load (by the 

means of pressure), practical being invariable towards the rotation speed, thus it can 

be concluded that it cannot be balanced with counterweights, unlike the momentum 

generated by the mass inertia force which have a translation motion. According with 

[4] and [17] the k=2 order harmonic forces of the two effects are in opposite phase, 

the unbalance being generated by the momentum from the second category and it is 

being lowered in endurance by the condition: 

22 ap r‹sr‹s
MM   (2.37) 

 

In case of an off-set engine gear an additional elements of the rolling 

momentum occurs which is being generated by the gas pressure. 
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Figure 2.4: Vectorial interpretation of the harmonic interpretation of a k-

order for the rolling momentum generated by the inertial phenomena  

 

The total component of the rolling momentum will be obtained by adding up 

the two vectors which leads to the formula for the momentum generated by the gas 

pressure force and the inertia, with the following formulas: 

 
kr‹sr‹s

kMM
kk

 sin  (2.38) 

 

with the following module and phase: 

 
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sincos
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 (2.39) 

 

and with a vectorial description that reassembles the ones previously applied: 

the projection on the Oz axis of a spinning vector having a kω speed and an opposite 



 

87 
 

orientation towards the crankshaft, with a phase angle on the Oy axis at the initial 

momentum. 

 

2.3 Balancing a poly cylindrical engine with cylinders in a line 

configuration 

The hypothesis around which the following considerations will be developed 

are: the engine has even distributed combustions, identical cylinders and equal in 

distance. Further on the two main types of loads are being analyzed: inertia forces and 

rolling momentum, as well as momentum of these forces. 

 

2.3.1 Inertia force balancing and the rolling momentum 

The issue of loading forces ca be solved by applying an unitary approach [9], 

keeping in mind the vectorial interpretations presented in the following chapters. 

Thus, on the basis of previous interpretations the vectorial module will be expressed 

using the following formula: 

 
Nk

r‹sark kk
MFFV


 ,,  (2.40) 

 

and this is a vector with an angular speed equal to kω and this is being 

projected on the Oy axis, this vector also describes the inertia force of masses with an 

alternative motion towards Oy axis and this is happening when the crank in passes 

through the lower dead center position and it is given by the initial phase symbolized 

as ψk. When ψk = 0, the vector describes the inertia force of rotation masses, or the 1st 

order harmonic of the inertia for all masses with a translation motion. Either way the 

last  specification on the unitary interpretation states the fact the rotation orientation of 

the |Vi| vector is identical with the on applied on the crankshaft when taking into 

account the inertia forces and opposite in case of the rolling momentum. In the case of 

the poly cylindrical engine, for the same harmonic order k there a vector for each 

cylinder |Vki|, j = 1  - i and this allows the an association can be made between the star 

of these vectors and the star shape described by the crank which can be obtained by 
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projecting all the crank corners on a normal plane of the rotation axis (as it is shown in 

the 2.5 figure and on the same figure the combustion order has been numbered for that 

crank). In these conditions the angle formed by two consecutive vectors is equal with 

kτπ/i, in which τ is the number of engine strokes and the time needed to achieve an 

engine cycle. Further on, two different cases can occur: 

- Npp
i

k 


,2  (2.41) 

and this lead to: 

k = 2pi / τ for: 

pi – for two stroke engines; 

pi / 2 – for four stroke engines. 

 

 and this is the case for which all vectors have a resultant with a value different 

from 0 which is i times higher than the module of the k-order component for one 

cylinder: 

.0
1

1




kk

i

j
kk

ViViVV
jj

 (2.42) 
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Figure 2.5: The star-shaped diagram described by Vkj vectors and the 

cranks 

 

Because of the fact that all vectors are in the same phase the resulting vector 

stays all the time in the same perpendicular plan on the crank shaft rotation axis, as 

well as the specified vectors and as a consequence this vector can be balanced by 

using the equilibration masses; 

- Npp
i

k 


,2 , a case for which the calculus for the resultant the 

vectors will be projected on the mobile system symbolized by Oξη, one of 

these projections being similar with the crank orientation l, and the other 

one is normal on the axis. The resultant will have the following module: 

22




kkk
VVV  (2.43) 

 

in the above formula the components have the following values: 
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 (2.44) 

 

because: 

iδ/2 = iτπ/2i = τπ/2: 

π – for two stroke engines; 

2π – for four stroke engines. 

 

Thus, for the cases in which: 

k ≠ 2pi/τ: 

pi – for two stroke engines;   

pi/2 – for four stroke engines.  (2.45) 

 

the vectors generate a zero value resultant: 0
k

V . 

The previous observations are valid for all engines with an even number of 

cylinders. For the general case it can be seen that the harmonic orders carry on and 

depend on the stroke number of engine cycle and on the number of cylinders: 

k = pi for two stroke engines; 

k = pi/2 for four stroke engines and i = 2m and m ℇ N; (2.46) 

k = pi for four stroke engines and i = 2m + 1 and m e N.  

 

It can be noticed that the engines with the cylinders displayed in line have a 

better balance once the number of cylinders increases because the harmonic order 

increases as well and this due to the fact that minimum harmonic order does not 

cancel itself, the amplitude of the superior harmonics constantly decreasing. In the 

meantime two stroke engines are superior comparing to four stroke engines with the 
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same number of cylinders, the lowest balancing features being recorded in the case of 

four stroke engine with an even number of cylinders. 

The 2.6 figure presents the balancing solution for mass inertia forces with an 

alternative motion Fa2k (for normal axis set gears, just the even harmonic components 

remain). In this case two balancing weights are being used symbolized by mea2k that 

are spinning in different orientation facing each other with an angular speed equal to 

2kω and that are developing centrifugal inertia forces with a |Fea2k| dimension which 

have the projections on the Oy axis and that are balancing the inertia force Fa2k for the 

entire engine mass multiplied by i, according to (2.42) formula. From the above stated 

the formula for the balancing mass can be deducted: 

k

e

ae
a

R
m

i
m

ka

ka 2

2

2 2 
   (2.47) 

 

Figure 2.6: Alternative motion inertia forces balancing diagram for a poly 

cylindrical engine with all cylinders displayed in line 
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In the above formula ρea2k is the distance from the counterweight mass center 

to the rotation axis of it. Additional, the presented solution also presents the possibility 

of balancing the rolling moment with an even order which is generated by the forces 

with an alternation motion by offsetting the balancing masses along the Oy axis with 

the Δy distance, given by the balancing formula between the additional engine couple 

of horizontal components of all centrifugal forces generated by the counterweights and 

the specific rolling momentum multiplied by the number of cylinders by: 

 
k

k

a

b
R

k
y

2

2

2

2

2
  (2.48) 

 

having b1 given by the (2.36) formula. For modern marine engines the solution 

applied in the case of four stroke engines fitted with four cylinders (such as Mitsubishi 

and others), for which the 2nd order harmonic remains or for which the previous 

quantity becomes equal with the crank length L, or more precisely, keeping in mind 

the formula (2.37), the following results: 

 zLy  1   (2.49) 

 

with:  

22 ap r‹sr‹s
MMz   

 

2.3.2 Inertia momentum balancing 

Further on the analysis of inertia momentum balancing is being dealt with, this 

forces being generated by masses with a rotation motion and afterwards by the masses 

with an alternative motion. 

 

2.3.2.1 Momentum balancing for inertia forces generated by masses with a 

rotation motion 
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Even though the inertia forces resultant of masses with a rotation motion is 0 

for all engines with even displayed combustions, the star diagram described by these 

is superposed on the one described by the cranks by the fact that they act on different 

plans and they will generate an unbalancing moment that acts on the engines supports 

as it is shown in the 2.7 figure. The gallop and serpentine momentum components that 

are being projected in the Oyz and Oxz plans are given by the formulas: 





i

j
jrry

i

j
jrr

aXMaYM
jjx

11

; (2.50) 

 

with the following resultant: 

22

yx rrr
MMM    (2.51) 

 

and the angle between it and the Ox axis is: 

x

y

r

r

r

M

M
arctan   (2.52)  

 

This resultant vector has a spinning characteristic and has a speed equal with 

the one of the crankshaft. It is an external moment that generated the vibration of the 

engine fitted on the support. Even if it has a constant dimension it is variable as 

orientation towards the crankshaft. The balancing can be realized by applying a Mer 

vector which is equal but has a different orientation, and this can be done by adding 

two extra masses m’er, which have the same weight but different rotation speeds 

symbolized by ω and are placed at a ρ’’er distance towards the rotation axis with the 

following dimensioning equation: 

  
rmee

Mlim
rr

 12**
 (2.53) 

 

and the length of the crankpin is symbolized by lm. 
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Figure 2.7: Balancing diagram for inertia forces momentum generated by masses 

with a rotation motion 

 

2.3.2.2 Balancing the inertia forces generated by masses with a translation 

motion 

The inertia forces of masses with an alternative motion occur in parallel 

vectorial system and are deployed in the same plans (acting in the Oyz plan and have 

parallel vectorial supports parallel with Oy). The vectorial system is being reduced to 

a single resultant given by the following formula: 


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
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aYMMFR
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in the last formula the end term includes only the gallop vectorial elements (as 

shown in the 2.8 figure). The balancing of the first component has been studied in the 

2.3.1 paragraph, that is why, in this paragraph only the second component will be 

dealt with. 

According to Varignon’s theory the sum of all moments of a vectorial system 

will be equal to the resulting moment of the entire system towards one point set as C0, 

thus: 





i

j
rezaja

aRaF
j

1

 (2.55) 

 

in the above equation arez in the coordinate of the C0 center in the system 

presented in the 2.8 diagram. We can extract the 2k order harmonic components from 

the previous equation, thus the following formula will result: 
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 (2.56) 

 

The above formula is valid only if the combustion are distributed in an even 

manner. If the additional conditions are placed in [1] then the following condition will 

result: 

 

 







ajia

Nppjk

j
1

,212
 (2.57) 

 

in the above formula a is the distance between two consecutive cylinders, the 

first equation suggesting the fact that the 2k order terms are permanently in phase and 

that means the resulting force is 0, and the second equation suggests that the cylinder i 

is placed at a distance a towards the reference origin system, thus the (2.56) equation 

will be modified as it is shown below: 
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 (2.58) 

 

from the above formula it can be suggested that base of the resultant force is in 

the middle of the crankcase. Thus, an observation will be made that is rational to 

calculate the unbalancing moment of the inertia force for all masses with an 

alternative motion towards the C0 point, keeping in mind the total inertia forces 

occurring in the total moment of the crankshaft. Calculated in this manner it will be 

defined as an external moment and the corresponding moment for only a half of length 

for the crankshaft is an internal moment by definition. For the harmonic components 

that have a 0 valued resultant the minimum value of the external moment does not 

depend on the point used as a reference at the beginning of the calculus; on the other 

hand for the harmonic components that have a resultant which is not equal to 0, the 

minimum value for the external moment will be calculated towards the symmetrical 

central plan that passes through the crankshaft (through the C0 point), because, in this 

case the base of the resultant force is the central axis of the vectorial system. 
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Figure 2.8: The diagram for the calculus of force inertia moments for masses 

with an alternative motion 

 

Thus, each time this is possible, the preferred solution chosen for a crankshaft 

is one with a symmetrical center plan and this is valid only for the engines with an 

even number of cylinders, while this will not four stroke engines, having a crank 

phase, also not for two stroke engines that have an opposite phase. For the first 

category, four stroke engines with an crank phase a number of possibilities of 

achieving a symmetrical number of crankshafts exists, expressed as: 

!1
22

1










i
 (2.59) 

 

and the bellow formula is valid for all crankshaft configuration: 
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For the engine mentioned in the second category, two stroke engines, the 

number of possibilities of achieving semi-symmetrical crankshafts is being given by 

the following formula: 

N  (2.61) 

 

for each configuration the combustion order is easily calculated. 

One sort of this solution of crankshaft is being presented in the 2.9 figure, 

where it can be noticed that two cranks have been taken into account and they are 

equally distanced towards the symmetrical center plan having the j and i-j+1, while 

the distances facing their symmetrical plans to the C0 point are: 

a
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aaaa
jirezrezj

2

12
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


  (2.62) 

 

Figure 2.9: Calculus diagram for the gallop moment of inertia forces that have an 

alternative motion, for a crankshaft with a symmetrical central plan 
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Inertia moments for masses having an alternative motion associated to the 

cylinders symbolized by j and i-j+1 towards the C0 point are calculated with: 
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because the angle between the two plans of the crankshafts elbows is: 

(i – j + 1)δ = 0 – for a four stroke engine (2.64) 

(i – j + 1)δ = π – for a four stroke engine   

 

Thus in the case of engines with a symmetrical center plan the gallop moments 

for the even order components will be equal to 0. Keeping in mind that the engine can 

have a  normal axis only the harmonics of 1st order remain. These harmonics generate 

a null moment towards the central symmetrical plan in the case of four stroke engines 

because all the cranks are phased. On the other hand, in the case of two stroke engines 

1st order harmonics generate a different moment towards the middle point fixed as a 

reference on the crankshaft of the marine main engine. 

In order to balance the moment Map a device can be used, this being presented 

in the 2.10 figure in which p represents the harmonic order that generate a moment 

different of 0: the first order or the 2k order occurs when the crankshaft doesn’t have a 

central symmetrical plan, if the engine has an uneven number of cylinders. In this case 

the number of solutions for the dynamic crankshafts is calculated with: 

 !1
2

1
 iN  (2.65) 

 

The balancing condition is: 

 
ppkaka aaee

Mlpm  cos2
2**

22

 (2.66) 
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in the above formula the overriding angle φap and is the angle of all 

counterweights with a null usual value due to the persistence presented only by the 

components contributing to the gallop moments. 

The analysis of certain types of engines with a certain number of cylinders 

have been studied in [1], [6], [11] and [17]. 

For marine diesel engines with a larger number of cylinders balancing 

solutions are being applied, such not respecting an equal distance between cylinders 

and the ignoring the set order of combustion [1], [14] and [17]. 

For practical and technical solutions needed to balance marine engines with 

inline displayed cylinders the solution proposed in the 3.5 paragraphed must be 

analyzed. 

 

 

Figure 2.10: Balancing device diagram for the Map moment 
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2.4 Balancing a V displayed cylinders engine 

As it has been shown in the 1.1.2 paragraph, the crankshaft of a V displayed 

cylinder engine, having an i number of cylinders, has the same configuration as an 

engine with cylinders displayed inline having an i/2 number of cylinders and an even 

combustion. If the number of cylinders for a four stroke engine with cylinders 

displayed in a V shape is a multiple of four than it’s crankshaft can be seen as a 

crankshaft of a four stroke engine with inline displayed cylinders engine or the one of 

a two stroke engine with inline displayed cylinders. 

According to the 2.11 figure, for a V shape engine with a normal axis, having 

the construction of reciprocating rods as shown in the bellow figure, all reciprocating 

rods assembly placed on the same crankpin have the harmonic resultants having a p 

order (p=1 or 2k for the normal axis mechanism) from the left line, as well as the right 

ones are calculated by applying the following formula: 
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with a given module expressed as: 
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these two harmonic components generate the following projections on the 

system axis as presented in the 2.11 figure: 
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from which: 
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 (2.70) 

This allows us to analyze in a vectorial manner the harmonics with a p order: a 

spinning vector with a variable dimension, with an angular speed multiplied by p, thus 

p times higher than the speed of the crankshaft, which has an extremity described by 

an semi sphere with the Ap and Bp semi axis. 

From these formulas, knowing the balancing conditions from [7], [11] and [14] 

we can conclude the following statements: 

- If Ap = Bp than the V shape configuration is defined by

     Nppm  ,112 . For the 1st order harmonic γ = π/2, thus the 

resulting vector describes a circle and can be balanced by using 

counterweights;  

- If Ap = Bp than the solution is γ = π and p = 2k and this means that for 

engines with opposite facing cylinders the inertia forces with an even order 

are null replacing the 1st order harmonic. 

In a particular manner we can calculate the orders of harmonics that generate 

the null component having one of the axis as a reference. 
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Figure 2.11: The diagram for calculating the harmonic resultant with an p 

order for a V cylinder displayed engine 

 

2.5 Engine balancing with opposite displayed cylinders 

In order to analyze this consideration we need to see the engine with opposite 

displayed cylinders as having two crankshafts, for which the kinetic phenomena has 

been analyzed in the 1.1.3 paragraph. The diagram used to calculate the unbalancing 

moments is being presented in the 2.12 figure. 

If the two crankshafts would be fixed in the same phase al the harmonic 

components of the inertia moments would be balanced. 

It has been presented that, in order to ensure the distribution forces, the 

misalignment between the two crankshafts has to be φ = 5 – 7 0RAC, thus meaning 

that the vectors that describe the inertia forces don’t have to be in fixed opposition and 

the value of the normal resultant will be insignificant.  
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Regarding the external moments with a p order, keeping in mind the formula 

θ1 = θ2 + φ we will have the following formulas: 
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 also: 
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The resultants on the two axis will then be: 
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The mentioned values for the unbalancing momentum generates the fact that 

these values will be in the range of (0.1 – 0.2) through the factor 
2

sin2
p

 from the 

value of the momentum generated on a single crankshaft. Generally this can’t be 

applied for this kind of engine, special balancing solutions being needed. 
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Figure 2.12: Calculus diagram for the unbalancing moments of the engine 
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3. DYNAMIC PHENOMENA ONBOARD SHIPS 

 

The present chapter represents a passing from the dynamic study of the marine 

engine seen as an technical entity to the connection between the propulsion engine-

shaft line-hull, this being an dependency without which no study can be undertaken 

regarding the ships propulsion systems. 

 

3.1 General view over the dynamic phenomena onboard ships 

Increasing the dimension of commercial ships, as well as the overall power of 

propulsion systems in the last decades are features that challenge the engineers, 

designers and shipbuilders and one of the most important ones is defined by the 

increasing vibration level onboard ships. The vibration phenomena onboard ships are 

very important and need to be taken into account because they simultaneous influence: 

- The endurance of several structural components in the hull; 

- The technical statement of various machines and devices fitted onboard; 

- The crew and passengers comfort level. 

In order to set the origin of these vibrations we can easily notice that 

construction elements of ships have an elastic nature being exposed to excitations 

generated the following sources: main engines and auxiliary engines, propellers and 

the shear effect of the seas. 

In order to achieve a precise study of vibrations onboard ships, as in any case 

involving vibrations, it is compulsory to keep in mind two complementary features of 

these phenomena, the excitation sources, as well as the reactions of propulsion 

installations and apparatus and the way naval structures react on these vibrations. 

Thus, in order to prevent the generation process of unneeded vibrations, being 

necessary to use a simultaneous approach from a static and dynamic point of view 

regarding the way the propulsion system and the hull react. The hydrodynamic 

functioning of the propeller in the aft region of the ship is, in fact, the origin of 
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another source of excitation and vibration. In the [7] reference the diagram of all 

sources of vibrations onboard ships have been presented, including all the coupling 

systems that can occur in case of several types of vibrations generated by the after 

mentioned excitations. This is why, reanalyzing the 3.1 diagram we can reestablish the 

excitation sources for vibrations generated onboard ships, but, more than this, the 

diagram highlights the main methods applied to limit the effects of these excitation 

sources that can be generated by the propeller, the engine and the sea induced effects, 

this being correlated with the above mentioned classification. 

3.2 The vibrations generated by the marine main engine 

According to the facts previously stated, the main vibrations generated 

onboard ships is being represented by the main engine included in the overall 

propulsion system. This is why in the next paragraphs a short presentation of the main 

types of vibrations generated by the main engine will be studied categorized as: the 

vibrations of shaft lines and the vibrations of the building blocks of these ones. 
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Figure 3.1: Excitation source diagram of vibrations generated onboard ships and 

main means of preventing and reducing them 

 

3.2.1 Shaft line vibrations generated by marine engines 
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The propulsion systems fitted with diesel engines are being directly coupled 

with the main propeller and this represent the two main sources of vibrations 

generated on the shaft lines, the main sources being the engine itself and the propeller. 

The excitation forces of the shaft lines in the case of a slow turning marine 

engine are being presented in the 3.2 figure, in which F is a total axial force and it 

being calculated by adding up the gas pressure force, Fp, which, in its own turn can be 

divided in a normal component, N that acts on the cross-head system and a B 

component acting along the reciprocating rod. The las component, B, at its own turn 

can be divided into a tangential force, T and a radial one, Z, both of them acting on the 

crank nut, as it was mentioned in the 1.2.1 paragraph. 

The vibrations acting on the shaft line of a marine engine of this type are being 

analyzed in this chapter, but a dynamic quasi-stationary behavior is being considered, 

this meaning, in fact, that the engine is functioning in a stabilized manner (constant 

values for effective power and rotation speed, as it has been shown in [5], 8th chapter). 

The changes in balance of the presented system represented by such an engine are low 

in amplitude and have a periodical occurrence. 

The mathematical models for the different vibration shapes lead to differential 

equation systems. The parameters of these equations can have a constant value, such 

as the values for masses and stiffness coefficients, or variable, such as rotation speed, 

power, excitation frequency and duration. 

For an example the linear differential equation for forced vibrations for the 

elastic system that shapes the propulsion marine engine shaft line has the following 

shape, based on a matrix notation: 

{F(t)}, = [R]{x} + [D]{x} + [M]{x}  (3.1) 

 

In the above differential equation the following notations have been used: 

- [M] – mass matrix (or moments with inertia mass); 

- [D] – amortization coefficients matrix; 

- [R] – stiffness matrix; 
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- {F(τ)} – column vector for all moments and excitation forces; 

- {x} – column vector for angular and linear elongations; 

- τ – duration (time). 

 

Figure 3.2: Excitation forces on the shaft line for a marine slow engine diagram 

   

In order to find a solution for the issue of free vibrations generated on the shaft 

line the {F(τ)} = 0, equation 3.1 has to have a homogeneous characteristic. This 

equation will allow us to calculate the values for self pulsations depending on the 

values of [M], [D] and [R] matrix, in other words the geometry of the equivalent 
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oscillatory system. Its own pulsation characteristics allow the calculus for the critical 

rotation speed for the reference engine, this meaning that the rotations for which the 

resonance phenomena occurs with all the excitations harmonics components. Usually 

the self pulsations are being calculated without taking into consideration the 

attenuation from the entire system. Experience has shown that the influence of 

attenuations are not substantial important the values for its own pulsations, even if in 

[10] and [11] the torsional attenuations can have a certain influence, especially when 

these ones are being considered as variable on harmonic orders. Further on they will 

be taken into account in this manner. 

The oscillatory system generates a response equivalent for the shaft line of the 

marine main engine and during periods when excitations occurs its forced vibrations 

and this means, mathematical speaking, that this is the optimal solution for the 

homogenous equation. In stationary conditions the excitation is, in fact, a periodical 

function and can be represented as a Fourier series development. A particular solution 

can be calculated for each harmonic order. 

The resonance occurs when the pulsation excitation has a certain harmonic 

order which is the same with its own pulsation for the entire system. In the area of this 

pulsation the dynamic multiplier [2] can lead to the increase of the vibration 

amplitude, all these being leveled only by the attenuation degree of the entire system. 

Afterwards it is obvious that this kind of situation must be avoided, being by far to 

dangerous and for this situation there are two possible solutions: 

- the action in an opposite phase having a resonance frequency at the 

excitation point; this being in fact the active compensation process and this 

implies that a complex technical solution must be used, such as digital 

control systems or other advance computers; 

- the modifying process for the dynamic behavior of the entire system in 

such a manner that peak amplitudes are not overriding acceptable values 

that are compulsory and imposed by the naval classification societies. It’s 

the same thing as the condition that resonance does not occurs in the area 

described by the normal engine cycle. This is the most chosen solution and 
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can be obtain by modifying the geometry of the entire system (as it will be 

shown in the 6th chapter). 

In the process of solving the issues of vibrations acting on the shaft lines in the 

case of a naval engine the calculus of autopulsation depends essentially on its 

geometry, as it has been shown. Even if the inertia moments and masses of the entire 

system can be deducted with a low level of difficulty, in order to obtain the values of 

the stiffness coefficients is much more difficult. In order to achieve this two reliable 

methods have been developed: 

- the torsional stiffness coefficients for the crankshaft can be calculated by 

using empirical formulas as mentioned in [13], [14] references. In order to 

test the exactness of this method experimental validation has to be applied 

[14]; 

- the torsional stiffness and the ones generated by different vibrations types 

can be established by applying a tridimensional model with finite elements, 

as shown in the 3.3 figure. 

If the structural elements and the boundary conditions are well chosen, then 

the values of stiffness coefficients calculated can approach in a very fine manner with 

the values in recorder in real situations this analysis being applied more often lately 

since the early stage of engine design. This method allows designers to extract an 

important amount of precise information in a more rapid manner, thus the results will 

eventually have to be confirmed by practical measurements methods. 

The shaft lines that are driven in a direct way by the propulsion main engines 

have three specific main types of vibration types: 

- shaft line torsional vibrations; 

- shaft line bending vibrations; 

- shaft line axial vibrations. 

It also has to be specified that the propeller gyroscopic effect (also called 

whirling) specified in [10], [11] hasn’t been taken into consideration in the analysis 

made in this chapter. 
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Recent research specified in references [7], [10], [11], [94], [95], [98] and [99] 

suggests the fact that coupling phenomena between different types of vibrations have 

to be considered in order to achieve a precise analysis of the shaft line vibrations, 

which will be detailed in the 4.4 subchapter. 

 

 

Figure 3.3: Crankshaft meshing for a Sulzer RTA type of marine main engine 

 

3.2.2 Maine engine structural resistance vibrations 

The normal force acting in the crosshead system of a slow engine (as presented 

in the 3.2 figure) generates a rolling moment through its components resulting from 

the forces generated by gas pressure and also from the inertia forces of alternative 

motion masses developed in an individual manner in each cylinder and this moment 

varies depending on the value of the rotation angle of the crankshaft. According to 

reference [6] and [14] this type of forces are called lateral forces and moments, these 

being developed in Fourier series, as it has been shown in 2.2.3 and 2.3.1 paragraphs. 

These moments and forces act as excitatory forces on the structural vibrations of main 

engines components and these vibrations have a very complex feature. This feature 

depends on the complicated construction of these structures, as well as on the complex 

characteristic of the load applied on the engine. The excitation degree, as a vectorial 

sum for the entire engine [13], for a given harmonic order depends on the combustion 

order, this being valid for the characteristic configurations of the vibration modes for 
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all structural resistance for a slow marine engine with six cylinders displayed in a line 

configuration, as presented in the 3.4 figure.  

Depending on the number of cylinders and the harmonic order the lateral 

excitations can generate other structural vibrations that depend the on the resistance of 

the engine itself, in the so called H and X modes. The major harmonic orders will 

stimulate, for an example, the engine vibration in a H mode, also known as the rolling 

force of the engine. 

These vibrations can influence the additional systems fitted on the main 

engine, such as overcharging blowers, auxiliary blowers, etc., being able to generate 

local vibrations in the engine compartment and the structural elements of the double 

bottom deck, but most of all, these phenomena have to be dealt with and reduces. The 

usually remedy for the structural vibrations of the main engine construction elements 

is represented by the process of fitting traverse stiffeners in the upper part of the main 

engine.  

This requirement is being applied in the case of 4, 8 and 12 cylinder 

configuration engines. In the case of marine engines with 5 or 6 cylinders this solution 

has to be applied only when the sea trials confirms their necessity.  

The mentioned type of stiffeners acts on the structural stiffness of the entire 

engine leading to a higher level of system pulsation vibrations. Usually hydraulic 

traverse stiffeners are preferred because these have a better behavior when small 

changes occur in the structural configuration slight changes, especially during the 

loading-unloading operations, as well as in the case when deformations occur during 

normal ship operation (as shown in the 3.5 figure).  

Specified vibration influence that act on the engine can be studied by 

generating a tridimensional substructure of the entire engine. These can be treated by 

using the finite element method [10], as well as the modal analysis method. An 

assembly like that which combines three main substructures, corresponding, in fact to 

a single cylinder structure, is being shown in the 3.6 figure. This example is being 

extracted from the simulations made on a slow marine engine Sulzer RTA type. 
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Figure 3.4: H and X vibration modes for the structural resistance for a marine 

main engine 
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Figure 3.5: Stiffening diagram for the structural resistance of a marine main 

engine 
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Figure 3.6: Structural messing for the marine main engine Sulzer RTA type 
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3.3 Propeller induced vibrations 

In the previous paragraph the mechanical generated excitations have been 

presented (generated by the engine itself), further on the hydrodynamic generated 

excitations will be presented (the ones generated by the propeller). 

The propeller can generate excitation vibrations to the ship’s hull through: 

- momentum and forces transferred to the ship body through the shaft line; 

- pressure variations sent through the aft mirror while it’s submerged; 

- forces and momentum acting on the rudder and bearings of the shaft line. 

The most important ones are, for the present study, are the excitations sent to 

the shaft line. At the base of force variations and transferred momentum by the 

propeller to the shaft line the wake can be considered, this being the environment 

specific to the propeller. This phenomenon, as the cavitation one, leads to increased 

variations in pressure amplitude on the aft mirror of the ship hull. 

The propeller sends variations of these three forces to the shaft line, as well 

momentum along it, around the axis system presented in the 3.7 figure. From all of 

these, according to the type of vibrations specific considered shaft lines in the 3.2.1 

paragraph, only the thrust force variations and for the torsion momentum will be taken 

into account for this study, thus, only the forces along the Oz axis. The calculus 

methodology of these forces will be presented in a detailed manner in the 4.3.3 

chapter. That is why certain considerations on the main parameters that have an 

influence on the level of vibrations induced by the propeller to the shaft line of the 

main propulsion engine: 

- disc ratio – this influence depends on the propeller blade number; the 

chosen number of blades will be done upon an wake analysis and an 

analysis of the level of risk regarding the occurrence of several types of 

vibrations of the shaft line; 

- propeller blade torsion – a very efficient method used to reduce the level 

of excitation sent to the shaft line; 
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- propeller blade number – this has to be done depending on the main 

engine number of cylinders and in order to prevent the resonance effect the 

blade number will not be a divisor of the number of cylinders; 

- the wake – the total number of shapes on the water surface from the aft 

area, in this manner the multiple harmonics of the wake phenomena 

depends on the shapes of the aft region, more aviated forms leading to a 

reduced level in unevenness of the wake generate by the ship; 

- cavitation – as long as this phenomena does not reach a forbidden level 

that can lead to propulsive efficiency decrease it can be affirmed that it has 

a low influence on the excitations sent by the propeller to the shaft line. 

 

Figure 3.7: Forces and momentum diagram generated by the propeller on the 

shaft line 
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3.4 Sea effects induced vibrations 

If we consider the action of the hull on the body (hull) of the ship as a source 

of continuous excitation that can generate vibration phenomena of its structure, it can 

be stated that the main focus might be set on background vertical vibrations of the 

ship. 

According to the actual orientation in ship design two types of this kind of 

excitations can be defined: the whipping excitations and the springing excitation. 

The whipping phenomenon, which is the most studied one, is the result of the 

impact generated by the hydrodynamic shocks applied on the bottom of the ship in the 

bow area. The occurrence of this phenomena is owed to the navigation process in 

hydro-meteorological conditions which allow the relative motion of the bow being 

sufficient in size to generate the mentioned impacts. Out of them the most important 

ones will be defined as above: 

- slamming – when the shock is occurs in the plan area of the bottom of the 

ship, especially when the bow of the ship emerges and submerges (as 

shown in the 3.8a figure); 

- slapping – when the shock is generated above the bow area, without 

submerging back in the water. 

Approximating the effects of slamming and slapping can be done in an 

analytical manner or by using measurements in the test basin, but both the methods 

have a certain amount of doubt. That is why it is impossible to consider the influence 

of these forces in the design stage. 

The springing is the second main type of excitation mentioned and it is 

generated by the hydrodynamic forces generated by the hull and corresponds with a 

phenomenon that assemblies the vibrating stage of any ship (as shown in the 3.8b 

figure). This is generated when its own hull frequency, vibrating according with the 

first method of vibration (out of the two existing ones), is being placed in the 

frequency range occurring at the junction between hull/ship ratio if the energy spectral 

density for the hull is high enough. 
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Dimensional approximation for the developed mechanical loads can be done in 

an analytical manner. In this way the spectral method of linearizing equations must be 

remembered because this shapes the phenomenon, allowing the usage of transfer 

functions, as well as realizing the spectral calculus with the same reserves regarding 

their own excitations, also mentioned in the case of the whipping phenomenon. 

The lowered rate of the preciseness in the case of approximation methods of 

excitation forces along with the lower level of information regarding the hull shape 

influence on the level of these excitations don not allow a precise formulation of some 

sort of recommendations on means of preventing whipping and springing effects. 

Even if the influence of sailing conditions on the whipping effect is very 

important, a way to prevent it in the design process can be made in an approximation 

manner based on the following considerations: 

- generating slamming or slapping through the over-dimensioned plate or 

“U” shape from the projection stage for the bottom shape of the shape and 

over-dimensioned steeps for the hull; 

- keeping a constant value for the draft in any sailing conditions at a 

recommended level; 

- as much as possible the avoidance of using a bulbous bows.  

The phenomenon depends as well on ships length and, in some particular 

cases, on the ships speed. 

Regarding the springing effect there is no possibility of reducing its effects 

because this phenomenon depends on the length of the ship as well as cargo 

distribution onboard and the amount of the ballast used. 
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Figure 3.8: Highlighting the vibrations excitations induced in the ship’s hull 

 

Generally these phenomena are correlated with the relation between value 

level of the first frequency of vertical variations and one of the major components 

from the hull spectral range. Thus it is obvious in the 3.9 figure and on its basis the 

highlights the influence of the ship’s length between perpendiculars, Lpp, on the 

whipping or springing occurrence. It can be noticed that for ships with a lower overall 

level in comparison with the hull length the submerge risks are much higher, that is 

why the importance of the bow’s shape influences the occurrence pf the whipping 

phenomenon. The springing phenomenon exists at any level but is more obvious when 

its own first frequency is much similar with the major component of the hull’s spectral 

values. 
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By reducing the value of speed these effects can have a lower occurrence 

chance and by modifying the course of the ship has the same effect on these 

phenomena. 

For whipping, by using the appropriate quantity of ballast water the draft in the 

bow part increases and the risk of whipping reduces. For springing, by modifying the 

cargo distribution onboard the occurrence chances can be dramatically reduced. A 

vibration analysis on the generated bodies by the excitation sources previously 

mentioned leads to the categorizing the vibrations as it follows: 

- local vibrations; 

- assembly vibrations; 

- hull vibrations. 

In the first category vibrations exciting a structural element (such as frames, 

panels, plates, transverses, bulkheads) are included having a dynamic behavior with a 

reduced influence on the additional elements. 

The second category includes vibrations with an important effect on main parts 

of ships structure such as: deck structures, aft part, the hull itself etc. All these 

structural elements form an assembly. In the 3.10 figure vertical and longitudinal 

vibrations are being presented for deck structures. 

The last category includes a series of vibrations acting on the hull itself, this 

being the most important category: 

- vertical bending vibrations; 

- transverse bending vibrations; 

- torsional vibrations coupled with bending vibrations; 

- longitudinal vibrations. 
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Figure 3.9: Ship length influence on the whipping and springing occurrence 

Generally the hull’s vibrations are increasing in the moment it is obvious that 

the resonance between the frequency of the hull and the frequency of the excitation 

really exists.  
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Figure 3.10: Vertical and perpendicular vibration occurrence diagram on 

deck structures 

 

Figure 3.11: Vibration modes in the case of the ship’s hull 

 

In the above figure, 3.11, five ways of generating vibrations on the ship’s hull 

are being described, the last mode being influenced by the vibration modes for all over 
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deck structures, on decks, on the double bottom deck, on the propulsion system and on 

the cargo. 

 

3.5 Hull-main engine dynamic interaction 

Alternative and rotation motion masses for each engine mechanism generate 

periodical forces with 1st and 2nd order in each individual cylinder. For all engines 

with an usual number of cylinders the vectorial resultant of these forces is zero (as 

presented in the 2.3.1 paragraph). 

These forces are called free forces even if they have a zero resultant value and 

they generate some unbalancing moments called free moments. Mainly, for a marine 

engine only 1st order and horizontal moments are taken into consideration, Mw and 

M1H, as well as 2nd order moments M2V (as presented in the bellow figure). 

 

Figure 3.12: Free moments diagram acting on the marine engine 

 

Free moments can be reduced by selecting an optimal combustion order, but 

even this is achieved, these free moments will still have an influence on the torsional 

and axial vibrations, in the same manner as the internal an lateral moments. For all 



 

130 
 

engines with a large number of cylinders only the free vertical momentum is taken 

into account, while for propulsion system with only four cylinders the 1st order free 

moment will also be taken into consideration in an additional manner. 

These free moments can generate vibrations on the hull when one or more 

from the following conditions are reached: 

- excitatory harmonic frequency is close in value with the one of the ship 

(resonance). This condition depends on the structural feature of the hull 

and the way the cargo is being distributed onboard; 

- free momentum act near a cluster of the own hull vibration (as seen in the 

3.14 figure). This condition depends on the position where the main engine 

has been installed onboard; 

- the amplitude of free unbalancing momentum overrides the influence of 

the hull’s structural amortization and this amplitude depends on the bore 

size and the combustion order; 

In case of engines with a short shaft line and with a small number of cylinders 

the engine has to be placed near the first aft cluster of its own vibration mode 

generated towards the hull. If the excitation frequency and the hull self-excitation 

frequency are close in value balancing measures have to be taken. The solution can be 

the generation of an additional free moment in every mentioned case, but this moment 

has to be the same in frequency as the engine’s free moment, but with a different 

phase. 
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Figure 3.13: Vertical and horizontal unbalancing moments diagram for a marine 

engine fitted onboard a ship, moments generating vibrations related to the hull 

 

 

 

 

 

Figure 3.14: Unbalancing moment acting diagram, vertical and with a 2nd order 

towards the hull vibration behavior  
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Free moment with a 2nd order is being lowered in an usual manner for all 

modern main engines and this is being achieved by fitting equalizers with balancing 

masses (or counterweights) and the most common type is the Lanchester type, at each 

end of the engine. This counterweights actually spin at a double speed of the 

crankshaft. If the cluster of the own vibration mode is the same with the one of a 

counterweight then it is enough and safe to use one single counterweight (as shown in 

the 3.15 and 3.16 figures). The devices have certain advantages and the main one is 

the fact that the excitatory unbalancing is being dealt with straight at its source. 

The generating solution of an equal moment, but with an opposite phase can be 

realized by using an electrical driven 2nd order equalizer which can be fitted in the 

rudder control room (as it can be seen in the 3.17 figure). The electrical engine 

rotational speed an phasing the compensatory moment have to be set on direct 

correspondence with the rotational speed of the main engine and have to be control 

with their evolution. The advantage of this sort of electrical equalizer is that it is 

always available for controlling and setting, but the main advantage is represented by 

the high price. It can’t be used to compensate free moments, a specific feature for 

marine slow turning engines. 

1st order free moments, M1H and M1V are generated by the same vectorial sum 

of free forces of masses having a rotation motion and of those with an alternative 

motion. These moments and forces act having an equal frequency with the one of the 

crankshaft. The highest values is being recorded in the case of four cylinder engines, 

in comparison with the engine with a higher number of cylinders. 
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Figure 3.16: 2nd order vertical moment balancing through a compensatory device 

 

For most ships the frequency of the own horizontal vibrations is higher than 

the one of vertical vibrations. 

That’s why the situation of hull simultaneous resonating vibrations generated 

by M1H and M1W momentum is extremely rare. If this situation, in fact, occurs the 

specific component of the 1st order free moment can be totally compensated in the 

plan it acts and this can be done by fitting some counterweights with the purpose of 

not totally reducing the effective amplitude of this free moment, but it modifies its 

phase, thus the unbalance in the other plan can be reduced and this technical feature 
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can be accepted if the unbalance stage is not critical. In these rare cases in which the 

resonance is generated in both components of the free moment with an 1st order the 

unique mass using balancing solution is not suitable. 

On the other hand effective counterweights are being combined with other 

counterweights that have an opposite rotation direction, at the same rotational speed, 

the 1st order unbalancing compensation will be cumulated. 

 

Figure 3.17: Electrical compensatory device operation 

 

In the figure 3.18 the balancing solution is being presented for all free 

moments with 1st and 2nd order obtained by including additional Lanchester 

counterweights at a compensatory device. In this manner even marine engines with 

major disadvantages, mainly the ones with four cylinders, can be perfectly balanced, 

thus the risk of exciting vibrations on the ship’s hull by free moments can completely 

avoided.  
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Figure 3.18: Simultaneous balancing diagram of free moments with a 1st order 

and a 2nd order for marine engines  
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4. SHAFT LINE DRIVEN BY MAIN ENGINES VIBRATIONS  

 

From the category of dynamic phenomena generically presented in the 

previous chapter, the outmost important dynamic phenomenon will be presented in the 

actual chapter, this being about the complexity of vibrations in shaft lines driven by 

marine engines   

 

4.1 Free vibrations of marine engines shaft lines  

The study of individual vibrations acting on engine shat lines is absolutely 

necessary to be done before doing any kind of study that has the subject represented 

by the real phenomenon itself, this being represented by the coupled vibrations that 

occur in the shaft line. Current study methodologies of the three types of basic free 

vibrations, torsional, bending and axial can be seen as an analysis for the excitations 

sources for these vibrations in order to establish the value of true forced vibrations. 

This aspects will be studied in this fourth chapter included in the present study. 

 

4.1.1 Free torsional vibrations 

The first stage in the study process of torsional free vibrations is represented 

by the calculus of own pulsation regime and the vibration modes. In order to solve the 

complex issues generated in such a study for this type of vibrations we have to start 

from the 1.18 figure and the motion equation itself noted as 1.10, aimed at the entire 

system including an engine drive and a disc driven by the crank. The motion equation 

for this type of system is: 

 (4.1) 

 

in the above equation θ2 is the rotation angle of the disc, having an mechanical 

inertia moment J2, while M2 is the stationary moment that acts on the opposite 

rotational direction (the opposite moment from the previous mentioned diagram). It 
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can be assumed that the mono-cylindrical and the mentioned disc are connected 

through an flexible area without torsional rigid mass C. In this case the engine 

momentum M is: 

),(
12

 CM  (4.2) 

  

where θ1 represents the torsional motion of the crank. By introducing this last 

value in the last value of 1.110 equation the following equations systems are obtained: 

 

{
𝐽 (𝜃1)𝜃1 + 𝐶 (𝜃1)𝜃1

2 + 𝐶𝜃1 − 𝐶𝜃2 =  −𝑝(𝜃1)𝐴𝑝𝑐𝑤𝑝(𝜃1)

𝐽 (𝜃2)𝜃2 − 𝐶𝜃1 + 𝐶𝜃2 =  −𝑀
 (4.3) 

 

The first equation in the system above is not a linear equation with variable 

terms, while the second one is a linear equation with constant coefficients. The means 

of solving this equation system is by approximating the previous motion equations for 

which the usual calculus technics can be applied relatively easy as it results from [70] 

and [91]. In this purpose two main stages have to be passed through: 

- The annulation of the variable coefficients; 

- The annulation of all non-linear terms. 

The first variable coefficient is J(θ1), representing the general inertia moment 

(1.106), for which the medium value applied per cycle will be used and this being 

defined as: 
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d
J  (4.4) 

 

This mathematical integral has a numerical solution. The second variable 

coefficient is the centripetal stiffness (1.106) which is a part of the non-linear term 

along with the part of the analysis carried on. For an engine operating at a constant 

rotational speed the speed of the vibrating movement is, in fact, a small part of the 

angular speed, thus the coefficient of the centripetal coefficient θ1 can be replaced 
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with the square value of the angular speed, ω2. Thus, the first term, the centripetal 

coefficient becomes a function of the rotational angle θ1. In the previous hypothesis, 

regarding the constant motion, this variable can be replaced with the first relation 

mentioned in the 1.1 formula table: ωτ = θ. Thus, the centripetal coefficient can be 

transferred in the right member of the motion equation and, by doing this, it becomes 

a time function. The same considerations can be done for the inertia pressure force, 

thus the entire right term of the equation is only a time function, this modified 

equation becoming: 

{
𝐽 (𝜃1)𝜃1 + 𝐶 (𝜃1) −  𝐶𝜃2 =  −𝑝(𝜔𝜏)𝐴𝑝𝑐𝑤𝑝(𝜃1) − 𝐶(𝜔𝜏)𝜔2

𝐽 𝜃2 − 𝐶𝜃1 + 𝐶𝜃2 =  −𝑀
 (4.5) 

 

It has to mentioned that the linearized motion equations contain in the right 

member the formula for the applied equation in the case of the crank, this being 

represented by the gas pressure force multiplied by the piston speed coefficient (1.3), 

as well as the variable inertia force (as shown in the 1.120 equations) which can be 

applied for the entire mechanism through the centripetal coefficient. 

The equation system has a set of solutions that are, in fact, the answer for the 

free torsional vibrations solutions, thus the solution for these vibrations will be 

homogeneous as the one presented below: 

([
𝐽1 0
0 𝐽2

] {
𝜃1

2

𝜃2
2} +  [

𝐶 −𝐶
−𝐶 𝐶

] {
𝜃1

𝜃1

}) = {
0
0

}   (4.6) 

 

the solutions for the above equation can be rewritten as: 
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in the above equations ω is the own vibrating frequency, 1* i , while 
1

  

and 
2

  are the values for vibratory motion values for the two mentioned discs. These 

solutions are introduced in the (4.6) equation system and lead to the following solution: 
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and this represents a two equation system which are linear and homogeneous, 

with the following different solutions, but only and only if this calculated determinant 

has a null value: 

0
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 (4.9) 

 

or: 

   .0
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Further on the values of the won frequency regime will be: 
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 (4.11) 

 

The first equation corresponds to a rigid system. If these values are replaced in 

the equation of motion homogenous system and if the amplitude of the first disc gets 

an arbitrary value (usually unitary) the vibration mode is being obtained with and 1st 

order attribute (with a single cluster): 
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After presenting this simplified bidimensional model the next stage is to 

calculate free vibrations of a n-dimensional system, which simulates the shaft line 

which is being driven by the marine engine. The crankshaft has a complicated shape 

that is why it will be replace with a simpler model, a straight fine one, which is an 
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equivalent of the real shaped one. In this manner an oscillatory equivalent system will 

be obtained and it is being formed from flexible elements without mass which are 

being bound by a series of discs and, on them, mechanical inertia momentum are 

being focused, that are being reduced at the rotation axis of the bends along with the 

other engine elements that have a certain type of motion (such as reciprocating rods, 

flywheel used to even the rotation motion of the crankshaft and the propeller) that can 

be calculated by keeping in mind the water adherent masses [7], [14] and [43]. In the 

same manner this elements can be calculated by applying an experimental method. 

For this, the equivalent oscillatory system of the shaft line driven by the 

marine engine (as shown in figure 4.1a) has been calculated by applying the reduction 

equation called BICERI [89], with its representation in the 4.1b figure. By 

symbolizing the vibration angular amplitude with 
J

 for an j order disc, with J [Nms2] 

the mechanical inertia moment for this disc,  with C [Nm] the torsional stiffness for the 

flexible area between order j and j+1 which is considered massless, the dynamic 

balancing equation will become: 

0. = )-(C-)-(C + J j1-j1-j1+jjjjj   (4.13) 

 

If we include the J index in the 1 – n variation domain, keeping in mind the 

fact that we have n-1 flexible areas between the n discs we can specify the fact that 

(4.13) equation represents, in fact, the motion equation system for all discs included in 

the system. If we consider all system solutions have a harmonic form, by introducing 

them in the (4.13) equation a homogenous n equation system is obtained with n 

unknown solutions, 
J

 being a system with a compatibility that represents an algebraic 

equation with a 2n order in the ω0 solution. This the own pulsation regime can be 

calculated. In order to solve this equation, in this stage, the Holzer – Tolle method has 

been applied [67], [91] and this is consisting in the iterative minimization of the residual 

momentum in order to verify the condition of generating free torsional vibrations: 

0. = J j

2

0j

n

1=j

  (4.14) 
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 The tables below, 4.1 and 4.2 represent the calculus for the above stated and at 

their bases the vibrations modes have been represented having I and II order for the 

exemplification of a Sulzer RND80 main engine with six cylinder in a line 

configuration with a 17400 HP and a nominal rotation speed equal to 122 rpm. 

 

Table 4.1: The calculus of the 1st order torsional vibration 

Disc 

number 

 

jJ  [Nms2] 

 

J [rad] 

 

jC [109 Nm] 
 j

2
j

n

=j

J 0

1

 

[105 Nm] 

1 8290.0 1.0000000 1.156870 178.107 

2 8046.2 0.9846043 1.156870 384.316 

3 8046.2 0.9544958 1.156870 513.319 

4 8046.2 0.9101243 1.156870 670.653 

5 8046.2 0.8521530 1.156870 817.964 

6 8290.0 0.7814480 0.723536 957.146 

7 4293.9 0.6491606 0.078441 1017.033 

8 73120.0 -0.6473968 - 0.000 

Table 4.2: The calculus of the 2nd order torsional vibration 

Disc 

number 

 

jJ  [Nms2] 

 

J [rad] 

 

jC [109 Nm] 
 j

2
j

n

=j

J 0

1

 

[105 Nm] 

1 8290.0 1.0000000 1.156870 2909.840 

2 8046.2 0.7484730 1.156870 5023.726 

3 8046.2 0.3142214 1.156870 5911.170 

4 8046.2 -0.1967409 1.156870 535.552 

5 8046.2 -0.6596730 1.156870 3492.430 

6 8290.0 -0.9615592 0.723536 694.447 

7 4293.9 -1.0575388 0.078441 -899.459 

8 73120.0 0.0891297 - 0.000 

The obtained results for the self-pulsation regime are 
I0

 =46.351 s-1 and 
II0



=187.351 s-1. Based on these results the first two vibrations modes have been calculated, 

as shown in the 4.1c figure. Analyzing the vibrations modes it can be observed that the 

first mode has the first cluster with an OI order at the middle of the shaft line, while the 

second one has the first cluster OII1 at the middle area of the crankshaft and this, in fact 

means that the two halves of the crankshaft have and opposite phase vibration regime, 

but second order also generates vibrations on the screw shaft, near the propeller. 
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Figure 4.1: Free torsional vibrations for the shaft line driven by de Sulzer 6RND90 

main engine: a – shaft line; b – equivalent oscillatory system; c – self induced 1st 

order vibrations  

 

The calculus for the forced torsional vibrations, including the attenuated ones, the 

torsional vibrations amplitude spectrum, the additional tensions diagram passing through 

the shaft line and the comparison with the restrictions imposed by the naval classification 

societies, as well as the critical rotation diagrams for the previously mentioned engine 

have been presented in the no. [17] reference. All these have been done by applying the 

Holzer method (as specified in the 4.3.1 paragraph). 
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That is why this paragraph will be ended by calculating just the self induced 

torsional vibrations for the shaft line driven by the main engine, and after, an unitary 

presentation of the excitation source analysis for each individual type of vibration will be 

done in the second part of this fourth chapter, a rigorous calculus being done, based on 

the matrix methods. 

 

 

 

 

4.1.2 Free bending vibrations 

 According to reference no. [91], due to the complicated construction of the 

crankshaft, the real mass is being replaced with a reduced mass, mr, which can be 

calculated by applying the kinetic energy equality condition: 

,
Y

Ym
 = m

2

r

2

jj

n

1=j

r


 (4.15) 

 

in the above equation the following notations have been made: 

- mj is the mass of all elements for which a meshing has been done; 

- Yj is vibrating motion amplitude corresponding to all mj masses; 

- Yr is bending vibration amplitude. 

The calculus for the yj deformations is possible by applying the 4.2 diagram in 

which a crank is being loaded in its median plan with a F force and is being leaned on 

its extremities. It can be noticed that the situation is identical with the one in which the 

crank would be fixed and imbedded at the level of its median plan and the 

deformation towards the force are identical with the force acting on the reaction of 

these one, thus F1 = F/2. 

The needed value of yr in order to proceed with the calculus can be determined 

by applying the Castigliano theorem [26], [91], [89], which states that M1, M2 and M3 

are bending momentum applied on the three constructive elements of the crank, while 
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I1, I2 and I3 are their inertia momentum, while E is the elasticity mode for the material 

from which the crankshaft is being made of: 
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  (4.16) 

 

Figure 4.2: Equivalent oscillating system diagram for one crank 

 

The bending momentum that act on the elements in the components of the 

crank, along with their derivatives are generated by the following expression: 
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Figure 4.3: Dimensions for a crank fitted on the Sulzer 6RND90 main engine 

 

 

The inertia moments of these elements are calculated on basis of the 

dimensions presented in the 4.3 figure. 

Taking into account the increase stiffness for a crank in the joining area 

between bearings and arms [91] is being done by reducing the quotas of the bearing’s 

length, the same thing being applied for the crankpins with the following dimensional 

values: 

/2,d =  h/3; = pyz   (4.18) 

 

The values are in the same note as the above presented figure. 

Thus, the (4.16) equation then becomes: 
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 (4.19) 

 

Numerical speaking: 

- Yr = 7.30735 x 10-11F1 and Y1 = 0.4840243 x 10-11F1; 
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- Y2 = 2.283857 x 10-11F1 ºi Y3 = 4.53947 x 10-11F1. 

 

Having these values introduced in the (4.19) equation the reduced value of the 

crank mass will be mr = 817 kg. Keeping in mind the dimensions of the shaft line 

presented in the 4.3 figure the oscillating equivalent system can be obtained, being the 

same with the one presented in the 4.4b figure. 

The masses presented in this figure are: 

- m1 = ˄ = m6 = mr and m7 = mv + m’a’ - the mass of the flywheel and the 

mass of the shaft that supports the flywheel, concentrated in the mass of 

the first element; 

- m8 - the mass of the intermediary shaft; 

- m9 = mel + m’a’ - the mass of the propeller and the screw shaft, 

concentrated in the center of gravity of the entire system formed by these 

two masses, being placed at a 21 distance toward the last crankshaft 

support.  

These masses have corresponding gravity forces expressed as: 

.1,9=j g,m = F jj  (4.20) 
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Figure 4.4: Equivalent oscillatory system and the own modes for bending 

vibrations in the case of a Sulzer 6RND90 main engine 
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For the previous system, being formed out of nine masses all focused on one 

single flexible framework with a neglectable mass, it can be considered that the 

crankpins are not opposing the deformation forces acting on the bending side, while 

the shaft line vibrates only supported on the ending bearings and that means that mass 

elongations Yj(τ), with j = 1 – 9 are generated by the framework’s bending feature 

which occurs in a perpendicular orientation on the axis of the unchanged crossbar. The 

influence coefficients for the entire system are symbolized by dij, with i, j = 1 – 9 and 

representing the elongation of the framework in the i cross section and it is generated 

by a force equal with the unity applied in the j cross section. 

Using the Mohr-Maxwell method and the Veresceaghin method for the 

calculus of the elongations, according with the 4.5 figure, we will have the following 

calculus formula for the influence coefficients: 

,
EI

1
)qS+qS+qS( =dz 

EI

mm
 = 

332211

ji
3

1=i

ij    (4.21) 

 

For the dimensions previously indicated the following expressions will be 

obtained: 

,
6L

)l-l-l)(2Ll-(Ll
 = qS = S

2

j

2

ijji

ii

3

1=i

ij   (4.22) 

 

𝛿𝑖𝑗 =  
𝑙𝑖 (𝐿 −  𝑙𝑗)(2𝐿𝑙𝑗 −  𝑙𝑖

2 −  𝑙𝑗
2)

6𝐸𝐼𝐿
 𝑓𝑜𝑟 𝑖 < 𝑗 

Thus, the same applies for the influence coefficients: 

 (4.23) 𝛿𝑖𝑗 =  
𝑙𝑗  (𝐿 − 𝑙𝑖)(2𝐿𝑙𝑖 −  𝑙𝑖

2 − 𝑙𝑖
2)

6𝐸𝐼𝐿
 𝑓𝑜𝑟 𝑖 > 𝑗 
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Further on, by applying the effect overlapping principle, the elongations of the 

two masses will be expressed by the following formula: 

.9,1,
9

1





i

ijjj
jFY  (4.24) 

 

Noting the inertia forces acting on the motion masses with Fj, these will have 

the following calculus formula: 

,ym- = F jjij   (4.25) 

 

from the above formula, introducing it in the (4.27) it would lead to: 

.=i , = y+ym ijijj

n

=j

9,10
1

  (4.26) 

 

Written under a matrix formula, the system (4.26) can be written as: 

{[𝑏] = {𝑦𝑗} + {𝑦} = {0} (4.27) 

 

for which: 
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Using the notations for the mass matrix and the influence coefficients will 

have the following equivalent: 
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 (4.29) 

 

Thus, the (4.27) matrix system becomes: 

{𝑦𝑗} + 𝑑{𝑦} = {0} (4.30) 
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in which [d] is, in fact the following matrix: 

        111 

 mbd  (4.31) 

 

Considering that the vibrating motions for mi harmonic masses the 

compatibility condition for the entire system will be obtained, having the 4.30 formula 

as a reference: 

0,= )-([d] 2

0det  (4.32) 

 

this becomes a equation of value and vectors for a square matrix that can be 

decomposed into a multiplier of triangle matrix, that is why, this equation can be 

solved by applying the matrix iteration method. 

Considerable vibrations in its own modes, these having the 1st and 2nd order 

have been presented in the 4.4c and 4.4d figures, these being calculated on the basis of 

the values of the results presented in the 4.3 table. 

 

 

Table 4.3: The calculus of I and II bending vibrations modes  

Mass number mj [kg] zj [m] YI j [-] YII j [-] 

1 817 0.825 1.0000000 1.0000000 

2 817 2.475 2.9677254 2.9123939 

3 817 4.125 4.8365882 4.5661747 

4 817 5.775 6.5434115 5.8025441 

5 817 7.425 8.0240385 6.4818916 

6 817 9.075 9.2161028 6.4889013 

7 9796 10.725 10.0587390 5.7353914 

8 27888 14.025 10.4904310 2.0815935 

9 42144 19.800 6.9697096 -4.5020608 
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Figure 4.5: Influence coefficients calculus diagram 

 

 

zj represents the distances from the mj masses to the first support from the left 

side, while YIj and YIIj are the relative amplitudes towards the amplitude of the first 

mass, for all I and II modes of vibrations. The self-pulsation obtaining by applying 

these formulas are 0I=10.76469 s-1 and 0II=49.98786 s-1. 

The process of calculating bending deformations for the crankshaft, being a 

supported in multiple points on the bearings from the crankcase, is being influenced 

by an approximation degree, that is why a calculus of the forced vibrations is not 

usually undertaken. In order to avoid dangerous situations that can be generated by 
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bending vibrations it is needed to seek to avoid resonance generation with strong 

radial excitation forces. In this purpose the construction of the crankshaft is being 

stiffened as well as in order to highlight these resonances outside the range of rotation 

speed in which the engine is functioning. 

Critical rotation speeds have been analyzed on the basis of torsional vibrations 

as it was shown in reference no. [17]. 

 

4.1.3 Free axial vibrations 

Axial vibrations of shaft lines have an origin in the axial vibrations of the 

crankshaft and the variations of these forces generated by the propeller thrust, as in the 

case of torsional vibrations through the so-called coupling phenomenon, this one being 

presented in a detailed manner in the 4.4 chapter of this study. 

In order to study the free axial vibrations using an analytical manner the shaft 

line of the propulsion system can be replaced with an equivalent oscillatory system 

which is formed by flexible masses and elements with dynamic features that allow us 

to approximate the real system as stated in references no. [16], [56] and [103]. The 

masses that interfere are the propellers weight, axial bearing and shafts. All these 

masses are coupled by using flexible shafts, as presented in the 4.6b figure. 

It has to be mentioned that the study of axial vibrations on shaft lines driven by 

marine engines is an issue that started to seem interesting for more and more marine 

users due to the excessive vibration level that can be achieved. The most recent 

problematic aspects haven’t been an target for most naval classification societies and 

the level of this category of vibrations is being seen as a superficial issue [103], the 

data being incomplete, but every now and then the data is studied and delivered on 

request to the final users for a certain type of engine or for a known shaft line 

geometry. 

If for the meshing of the shaft line in mass elements coupled using flexible 

areas a similar method is being used as in the case of bending vibrations study, the 

suggested meshing method in the no. [58] and [103] references, tell us that the method 
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applied for the calculating the specified axial areas doesn’t not contain any relevant 

information. 

That is why, for the study of axial vibrations the starting point is represented 

by the study of crank deformation, this being analyzed in the same manner as the 

situation in the 4.2 figure, but this time the crank has a load applied consisting of a 

two axial force system F, applied at its ends. 

To this purpose, the crank is being considered as an element of the crankshaft 

being supported by the two neighboring crankpins (as shown in the 4.7a figure), that is 

why is being replace with to reduced masses m1 = m/2, m being the real mass of the 

crank, but these two masses are connected through a flexible area with the same length 

(as shown in the 4.7b figure), this element being massless and having an unknown 

axial stiffness. 

The generated deformation by this force system in the cross sections in which 

this fact is being applied can be calculated by applying the Castigliano theorem, 

sustaining the idea that the bending deformation has to be calculated. The crank is 

being fitted at the level of its median plan due to the symmetry of the load applied. 

This time the fact that certain elements of the crank are influenced by compression 

(element 1), others to bending (element 2) or simultaneous to both types of loads 

(element 3). 

In this manner the needed deformation is being calculated by applying the 

Casigliano formula for each one of the three elements in the composition of the crank: 

,z = z s

3

1=s

r   (4.33) 

  

 for which z is the axial vibration amplitude for the crank in the precise point of 

the replacing mass and an arbitrary term has a generic formula: 
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 where M symbolizes the bending moment that acts on the chosen arbitrary 

element mentioned above. 

 Further on N – represents the compression force, while Is and As is the axial 

inertia momentum, also the area of the transversal cross section for that certain 

element, E being the longitudinal flexibility module for that type of material. In the 

(4.34) formula it has been kept in mind that in the case of the bending phenomenon 

the crank increased stiffness occurs in the region of crankpins fittings, by reducing the 

length quota for the crankpin, for the bearing and for the arm with δz and δv values, 

according to the (4.18) formula and the 4.3 figure. 

 

Figure 4.6: Equivalent oscillatory system and its own axial vibrations modes for 

the Sulzer 6RND90 main engine 
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Further on, it must be said that the values for the normal forces and for the 

bending moments that load the three crank elements, as well as the formulas for their 

corresponding partial derivatives are expressed as it follows: 

Element 1: 𝑁1 = 𝐹; 
𝜕𝑁1

𝜕𝐹
= 1   (4.35) 

Element 2: 𝑀2 = 𝐹𝑦; 
𝜕𝑀2

𝜕𝐹
= 𝑦  (4.36) 

Element 3:   (4.37) 

 

 

The axial inertia moments, as well as the areas of the cross sections which are 

being taken into account while performing the calculus are given by the following 

formulas: 
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 (4.38) 

 

where b is the average width of the arm [89]. In all the previous formulas, the 

notations and dimensions for the crank arm are the same used in the 4.3 figure. 

Keeping in mind the 2.22, 2.23, 2.24 and 2.25 formulas the 3.4 formula will 

become: 
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 (4.39) 

 

The same deformation has been symbolized with zv and has to take place under 

the load of the same force system F from the equivalent system presented in the 4.7b 
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figure. by expressing this deformation depending on the axial stiffness K for the 

massless flexible element from the equivalent oscillatory system will be obtained as: 

.
K

F
 = z r  (4.40) 

 

 By equalizing the 4.39 and 4.40 formulas the analytical expression for the 

axial stiffness for a crank fitted on the crankshaft of the engine will be obtained: 
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 (4.41) 

 where the factor 2 from the lower part of fraction has been introduced due to 

the symmetry of the diagram configuration of the crank and the type of support taken 

into account for this consideration, that is why the total elongation for the entire 

system on the axial direction will have a double value as the one given by the 4.39 

formula. 

 On the base of previous considerations we can calculate the stiffness of the 

flexible area between the two equivalent masses, this being the point where the bent 

has been meshed: K = 4.33552*107 N/m. In this manner the oscillatory system from the 

4.6 b figure has been generated, for which the masses are: m1 = m7 = m/2, while m2 = … 

= m6 = m; while m8 has the same meaning as m7 from the previous paragraph, while m9 

is given by adding the masses of intermediary shafts and screw shafts plus the propeller 

mass, the las mass being focused in the mass center of the system containing all these 

masses placed at a 4.21 distance towards the last support. m symbolizes the mass of a 

crankshaft bent.  
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Figure 4.7: Axial oscillatory system diagram for on crank 

 

 K7 and K8 stiffness are being given by the following formula: 

,
l

EA
 = k  (4.42) 

  

 in the above formula A is the cross area surface for the intermediary shaft, as well 

for the area of the cross section of the screw shaft, while E is the elasticity module in the 

longitudinal orientation. The l7 and l8 lengths are deducted from the 4.62 figure keeping 

in mind the existent perfect analogy between the torsional vibrations and the axial ones. 

For the calculus of the later ones doesn’t exist a special mathematical tool that is why the 

one presented in the 4.1.1 paragraph has been applied. In this manner the mechanical 

inertia moments have been replaced with mass values, while the torsional stiffness have 

been replace with the stiffness of two areas between two consecutive masses. In the 4.4 

and 4.5 tables the calculus results have been presented for the free axial vibrations, 

according to the first two vibration modes. The relative amplitude has been symbolized 

by zj this being done for the axial relative vibrations in the considered masses. 
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 The self-generated pulsations for the shaft line axial vibrations are: 
I0

 =18.167 

s-1 and, respectively 
II0

 =42.103 s-1. The self-generated modes are given in the 4.6c 

figure. it can be noticed the axial vibration shapes resemble with the torsional ones, as 

the nearest value of 1st degree self-generated torsional pulsations with the same one of 

2nd degree axial vibrations.  

Table 4.4: The calculus for the I mode of axial vibration 

Mass number mj [kg] Zj [-] kj [107N/m]   jj Zm 2

0
 

[107N] 

1 7803 1.0000000 4.33552 0.25753 

2 15606 0.9405988 4.33552 0.74201 

3 15606 0.7694522 4.33552 1.13833 

4 15606 0.5068929 4.33552 1.39941 

5 15606 0.1841135 4.33552 1.49424 

6 15606 -0.1608390 4.33552 1.41155 

7 7803 -0.4861192 9124.78200 1.28636 

8 9796 -0.4862602 971.89780 1.12915 

9 700032 -0.4874220 - 0.00000 

 

Table 4.5: The calculus for the II mode of axial vibration 

Mass number mj [kg] Zj [-] kj [107N/m]   jj Zm 2

0
 

[107N] 

1 7803 1.0000000 2.380953 1.38321 

2 15606 0.6809568 2.380953 3.26704 

3 15606 -0.0072595 2.380953 3.06621 

4 15606 -0.7798258 2.380953 0.90887 

5 15606 -0.9894598 2.380953 -1.82840 

6 15606 -0.5677331 2.380953 -3.39900 

7 7803 0.2162563 9124.78200 -3.09987 

8 9796 0.2162563 971.89780 -2.72375 

9 700032 0.2139986 - 0.00000 

  

4.2 Excitations sources analysis for shaft line vibrations 

 The issue of correct analysis of all excitation sources for complex shaft line 

vibrations is more and more requested, at least in the last years, once on the market a 
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new generation of marine engines has emerged, and from here arises the opportunity 

of undertaking this kind of study with the main focus on the force vibrations. 

 In the actual paragraph, in the first stage, an analysis is being done on the 

classical source of shaft line vibrations which are driven by internal combustion 

engines, these being in fact the tangential and radial components of gas pressure 

forces, as well as the inertia mass forces which have a translation motion. 

 Marine slow turning engines have a propulsion particularity and this will be 

presented in a special manner, especially when vibrations induced by the propeller in 

the shaft line coupled in a direct manner with the marine engine. 

 

4.2.1 Torsional vibrations excitation sources 

 Tangential forces acting on the crankshaft bent (as it has been shown in the 

1.14 and 3.2 figures) are considered as being conventionally applied in the middle of 

the shaft bearing and it is acting in a tangential manner, being multiplied by the value 

of the crank radius R, this being the main excitation source for torsional vibrations of 

the shaft line. 

 That is why, in the next paragraphs just the analytical formulas of tangential 

excitation forces will be presented, understanding that for the torsional excitatory 

momentum will obtain the same formulas multiplied by a constant dimension (in this 

case the crank radius R). In this manner we could use the direct values of all tangential 

forces in the process of complex vibrations acting on the shaft lines of marine engines. 

 The mathematical formula of this excitation force is: 

,T+T=
)+(

)F+F(=)T(=T apap






cos

sin
 (4.43) 

 in the above formula Fp symbolizes the gas pressure force developed in the 

cylinder, Fa is the mass inertia forces with an alternative motion, while θ and β are 

crank angles, or the bending of the crank. 

 The component generated by the gas pressure force Tp can be developed in the 

following Fourier series 
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T+T=T p

1=k

pp k0 


 (4.44) 

 

In the following formula the mean value of Tp0 is given by the following 

formula: 

,)d(T
T

1
=T p
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c

0
  (4.45) 

 

its harmonic components with an k order are: 

,kB+kA=T ppp kkk
 sincos  (4.46) 

 

the developing applied coefficients are: 
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T

2
=A p

T

0

c

p

c

k
 cos   (4.47) 

 

In the previous formulas Tc symbolizes the engine cycle period, being given in 

the (1.100) formula. 

The component given by the mass inertia forces with a translation motion has 

the following formula: 

 kB=kbRm=T ak

2

aa kk
sinsin  (4.48) 

 

in the above formula ω is the crankshaft angular speed, ma is the sum of all 

masses with a translation motion, while bk (as well as Bk) are harmonic coefficients for 

tangential excitation generated by the inertial elements [91]. 

For a single engine cylinder with an random j order the tangential excitation 

force will have the following resulting formula: 

).n-k()B+B(+)n-k(A=T japjpk kk jk jj
 sincos  (4.49) 
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with the module value given by: 

,)B+B(+A|=T|
2

app

2

k kk jk jj
  (4.50) 

 

and the initial phase expressed as follows: 

,kn-
B+B

A
= j

ap

p

k

kk j

k j

j
 arctan   (4.51) 

 

In the above formula δ symbolizes the off-setting between two consecutive 

combustions, while nj is the number of angular off-settings which separates the 

combustions between 1 and j numbered cylinders, keeping in mind the combustion 

order (for an example: the Sulzer 6RND main engine has the following combustion 

order: 1-6-2-4-3-5-1). 

In the 4.6 table the developing coefficients for a series has been presented, the 

first 12 harmonic components for the tangential excitation components , while in the 

4.8 figure and 4.9 these variations have been presented towards the crank angle 

according with the gas pressure components and the inertia of masses with a 

translation motion. 

Table 4.6: Harmonic coefficients for excitation tangential forces for a 

Sulzer 6RND90 main engine 

k Apk [kN] Bpk [kN] Bak [kN] 

1 301.2 753.4 48.9 

2 8.2 657.2 -470.1 

3 -54.0 374.9 -145.9 

4 -69.2 216.5 -9.8 

5 -83.6 116.2 0.9 

6 -71.7 69.1 0.0 

7 -68.3 56.5 0.0 

8 -63.5 49.9 0.0 

9 -55.1 42.5 0.0 

10 -45.3 24.6 0.0 

11 -27.4 7.5 0.0 

12 -11.0 -11.4 0.0 
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4.2.2 Excitation sources for bending vibrations 

The radial excitatory force is given by the following formula: 

.Z+Z=
)+(

)F+F(=)Z(=Z apap






cos

cos
 (4.53) 

 

Gas pressure component has the following formula: 

,Z+Z=Z p

1=k

pp k0 


  (4.54) 

 

in the above formula the average value Zp0 can be calculated in a similar 

manner by applying (4.45) formula, thus the harmonic components will be calculated 

by the following formula: 

,kB+kA=Z ppp kkk




sincos  (4.55) 

 

having the harmonic components A’pk and B’pk are similar with the ones 

expressed in the (4.56) formula. 

For the inertial component the following formula is being applied: 

,Z=Z a

0=k

a k


 (4.56) 

 

for which the harmonic components are: 

,kB=kbRm=Z ak

2

aa k




coscos   (4.57) 

 

in the above formula the harmonic coefficients are calculated using reference 

No. [17], but these are not specified at all in the technical literature regarding similar 

studies. 

In the same manner as the analysis of excitations previously presented, the 

excitatory radial force with an k harmonic order applied for the j cylinder will be: 
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),n-k(B+)n-k()B+A(=Z jpjapk k jkk jj




sincos  (4.58) 

 

or, put in a more concentrated form: 

 
jjj kkk

kZZ  sin  (4.59) 

 

with the following module: 

,B+)B+A(|=Z| p

22

apk k jkk jj



 (4.60) 

 

and with the following initial phase: 

.kn-
B

B+A
= j

p

ap

k

k j

kk j

j
 





arctan  (4.61) 

 

In the 4.7 table the values for the harmonic coefficients corresponding to radial 

excitatory forces are being presented for the first 12 harmonic components, used as a 

basis in the process of drawing the crank angle variation curves, as shown figures 4.10 

and 4.11. 

The radial force has a harmonic structure with the one previously presented 

that mainly means that the crankshaft bending are the ones applied for the shaft line of 

the engine. 

It has to be mentioned that the harmonic analysis of tangential excitations, as 

well as radial ones have been presented in the 4.2.1 and 4.2.2 paragraphs and this 

presentation has been based on the indicated diagram lifted on the operating engine 

functioning at a normal level, as well as the exact knowledge of all geometrical and 

mass features for engine drives. 
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Table 4.7: Harmonic coefficients for excitatory radial force applied in the 

case of a Sulzer 6RND90 main engine 

k Apk [kN] Bpk [kN] Bak [kN] 

1 1572.3 203.9 138.1 

2 1156.1 428.7 450.3 

3 672.3 457.2 143.9 

4 404.2 387.4 10.1 

5 252.4 342.6 1.0 

6 156.1 275.6 0.1 

7 55.2 143.5 0.0 

8 1.5 116.2 0.0 

9 -33.4 85.6 0.0 

10 -49.0 62.4 0.0 

11 -49.8 42.9 0.0 

12 -42.7 25.2 0.0 
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Figure 4.8: Rotational angle variation for the first 6 harmonic components of the 

tangential harmonics generated by gas pressure forces for a Sulzer 6RND90 

main engine 
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Figure 4.9: Rotational angle variation for tangential excitation generated by mass 

inertia for a Sulzer 6RND90 main engine 
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Figure 4.10: The rotational angle variation for the first 6 harmonic components 

of radial excitations generated by gas pressure 
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Figure 4.11: Rotational variation angle for the radial excitation generated by 

inertia forces
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4.2.3 Axial vibrations excitations sources 

Naval propeller induced excitations analysis, shaft line main source of axial 

vibrations, generated by the thrust bearing force variation, as it was previously shown, 

represents an important stage the present study, being a particular features for slow 

turning main engines. 

The issue has been dealt with by applying the propeller swirling model due to 

the complexity level of it, that is why a higher amount of attention has been given to 

it. 

The calculus of induce propeller excitations in the shaft line of a main engine 

that drives it is being based on the swirling horse shows models from which Prandtl 

has created the bearing line theory, this consisting in the idea of reduction of each 

individual profile of an finite hydrofoil to a single throw point, so, by replacing the 

hydrofoil with a single tied swirling, which is being placed on the point line equal 

with ¼ of the local string c of the mentioned hydrofoil, on the throw segment [-b/2, 

b/2], as it is presented in the 4.12 figure. According with the elements presented in the 

figure the swirling surface will be reduced, in this certain model, at a plane surface 

that contains all the free swirls being considered reciprocating, as well as parallel, but 

having an infinite upstream speed V and these elements are being deduced straight 

from the value of the throw segment and stretches to infinite downstream. The study 

of propulsive operation is based on the hydrofoil theory, thus, on the flow with a 

profile round circulation. 

According to this model a system consisting of a finite number of propeller 

blades will be considered, each propeller blade could be considered as a resultant of 

the spinning around the Oz axis for the finite hydrofoil, as shown in the 4.12 figure. 

Thus, the propeller blade is being replaced with a tied swirls line, symbolized by Ωp, 

interfering in reciprocal manner with the free swirls that are elapsed form the 

freeboard, this being of two types: free transversal swirls, Ωlt and these have a 

perpendicular axis on the throw swirl and free longitudinal swirls, symbolized by Ωp, 
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with an axis parallel with the axis of tied swirls. Those two types of swirls are 

generated by the propeller rotational force. 

For the calculus of disc propeller induced speeds a propeller with a zp number 

of propulsive blades will be considered and this system rotates with a ω angular speed 

towards the Oxyz Cartesian axis system, the origin being the same with the propeller 

center, while the Oxz axis has the propeller axis, according to the 4.13 figure. Thus a 

P(x,y,z) random space point is being considered in which the value for the swirling 

induced speed is being calculated using the Biot-Savart formula, mentioning the fact 

that the propeller operates in free waters, the current being uninterrupted. I symbolizes 

a random point on a dr1 element included on infinite thin line of free swirls. The 

cylindrical coordinates for the I point are s, ψtanθj, ζ, and the Cartesian ones are 

defined by ξ, η and ζ. A corresponding point J(s, θj, 0) on the infinite element drp 

which is thin infinite for the tied swirls around the j propeller blade. The Cartesian 

coordinates of this point are: s sinθj, s cosθj, 0. 

 

Figure 4.12: Rotational model for the propulsive propeller 
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Figure 4.13: Rotational model for the finite hydrofoil 

 

The real functioning process for the propeller on the hull aft part takes place in 

an ununiformed environment influenced by the hull itself. The propeller is being fitted 

in the aft part of the shape, the ship’s body trace acts on it, and this was mentioned as 

wake in the 3.3 paragraph. This phenomenon hasn’t been studied that much because it 

always has a random complex characteristic for its motion. In the study of marine 

propellers an important part is played by the starting phase of the wake, which acts on 

the immediate vicinity of the hull, the area where the propeller is being fitted. Thus 

the average flow speed in the propeller disc, symbolized by V’ will be much smaller 

than the V speed of the ship toward the infinite upstream point (as shown in the above 

figure). 

If we consider the swirling system as being connected to the propeller blade 

given by the motion function Γ(r,θ), r being the current radius and θ the rotational 

angle for the propeller functioning in an effective wake environment. The main 
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components for the induced speeds are symbolized by ua and ut. The angles 

highlighted in the 4.14 figure are: 

- β – ideal speed V0 angle with the plan of the disc propeller (pitch angle); 

- βind – absolute speed VR angle with the same plan (induced angle); 

- i – resulting speed angle with the profile span (incidence angle); 

- i0 – null lift axis angle with profile span; 

- δ – stall angle (profile positioning angle); 

- δ0 – null lift axis angle with the disc propeller plan; 

In these conditions the resulting absolute force will be calculating applying the 

following formula: 

VR = V + ω x r + ut (4.62) 

  

The connecting formula between the modules of these speed values and 

angles, in the case of a propeller blade element at the current radius r, will be obtained 

at the junction between a coaxial cylinder with the propeller rotation axis and its own 

disc, given in the following formula: 

1
tan

tan
tan

**





 ind

ind

ta

V

u

V

u
 (4.63) 

 

in the above formula w symbolizes the average wake coefficient which is 

calculated with the experimental methods mentioned in reference No. [10], depending 

on the global characteristic of a bulk-carrier ship with a 55000 tdw capacity, a 

common ship for the Romanian Commercial Navy fleet. These ships are usually fitted 

with a Sulzer main engine mentioned in the previous paragraphs, for which the thrust 

force is kept in mind while the ship is in operation through water with its speed V 

being reduced and this phenomenon is created by the wake effect. The basic issue 

consists in finding a model as real as possible. Thus, for the propeller operating in an 

uneven flow, a circulation fluctuation has to be taken into account, as it has been 

shown, defined by r radius as well as θ, known as the rotational angle, by generalizing 

the dependency formula on a single variable, linear for the Glauret proposed 
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circulation form, as mentioned in reference No. [43]. This allows us to generate the 

following formulas for the induced speeds: 

ds,
s-r

i

s

)(r,

4

1
 = u

a

R

R

a

e

b 




  (4.65) 

 

in the above formula ia and it are axial and tangential integrating factors, which 

are approximated by applying Bessel functions using asymptotic functions, as noted in 

the No. [6] reference: 

𝑖𝑡 =  {
𝑧𝑝  (

𝑠

𝑟
− 1) 𝐵2, 𝑓𝑜𝑟 𝑠 > 𝑟

− 𝑧𝑝  (
𝑠

𝑟
− 1) (1 − 𝐵1)𝑓𝑜𝑟 𝑠 < 𝑟

 

 

as well as: 

𝑖𝑡 =  {
𝑧𝑝  (

𝑠

𝑟
− 1) 𝐵2, 𝑓𝑜𝑟 𝑠 > 𝑟

− 𝑧𝑝  (
𝑠

𝑟
− 1) (1 + 𝐵1)𝑓𝑜𝑟 𝑠 < 𝑟

(4.67) 

 

In the previous formulas the following notations have been made: 

.
1

 =  ;
s

r
 = 

0







tantan
 (4.68) 

 

The resulting B1,2 coefficients from the previous developments have the 

following formulas: 
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with: 

,
1)-+11)(++1(

1)++11)(-+1(

2
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The limitations conditions that have to be satisfied by the circulations are: 

    0,, 
jbje

RR  (4.71) 

 

Figure 4.14: Elementary forces acting on the propeller 

 

thus, for the integrating factors: 

   (4.72) 

 

and: 
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 (4.73) 

 

Further on the variable exchange will be taken place: 














,)R-R(
2

1
-)R+R(

2

1
 =  s

)R-R(
2

1
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2

1
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bebe

beBe

cos

cos

 (4.74) 

 

Thus the variation domain for r and s being [Rb, Re], the new coordinates τ and 

σ will be in the domain [0, π], the first variable is defining the radius position for the 

point for which the induced speed value is being calculated, while the two position for 

the point for which the free swirl is being generated. Re and Rb are the radius values 

for the propeller disc, as well for the radius of the propeller hub. In order to ease the 

calculus the dimensionless values will be introduced: 

 
 

 
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b

b

e
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a
r

R
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sG




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


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12
;;

2

,
,

*
 (4.75) 

 

the first notation in the above formula denotes the dimensionless circulation, 

while the second one the dimensionless radius of the propeller hub. For the first 

dimension the following variation law will be proposed, based on the previous 

presented features: 

,k)(G = ),G( = )G(r, k

1=k




 cos  (4.76) 

 

for the  Gk  coefficients the following trigonometrical sums will be proposed: 

.jg = )(G j

k

1=j

k  sin  (4.77) 
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The integrating factors can also be developed in a Fourier set through the new 

variable values introduced by the (4.74) formula: 

.i)(I = ),(i ta,

1=i

ta, i




 sin  (4.78) 

 

By limiting the radius domain value, as well as the sectioning ones for the 

propeller blades taken into the calculus, rk and si, due to practical reasons, at a 2n 

number, as well by introducing the variable change from the (4.74) in the (4.66) and 

(4.67) formulas we can say that the (4.78) formula is a linear system with a 2n number 

of equations for the 2n values generated for 2i, having an equation system with 2n 

unknowns, Ia,t for each value of k = 1–n. 

By introducing the integrating factors previously obtained in the (4.65) 

formula, as the dimensionless circulation (4.75) and the new variables the formulas for 

the induced speeds in the disc propeller will be obtained: 

.
i

kua = 
V

),(u
ta,

n

1=k

n

1=i
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ta,

ik,




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

sin

sin
sin  (4.79) 

for which the ua,t coefficients are given by the following formula: 

.n1,=k ,
2

1)+k(k
=j=S ),(hg)S-S(=u

k

1=j

kta,k1-knta, iik,   (4.80) 

 

with the values calculated in the (4.79) formula and the induced speeds, as 

well as the hat coefficients given by: 
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thus, the (4.63) has the following form: 
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the above formula is a n unknown equation, with gk and k = 1 – n. In order to 

solve it the θ coefficient takes the following value: 
0

  and the τ angle takes n 

values (thus for the r radius), for which the β (pass ratio) angle values are calculated in 

an according manner, as well as the values for the βind angles (using the inductive 

efficiency values ηind): 
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  (4.83) 

 

in the above formula ηE is the influence coefficient induced by the hull and can 

be calculated by applying the experimental formulas from the reference No. [43], 

while η0 is the propeller efficiency in free waters (with interrupted flow), which is 

calculated using the set of diagrams for the studied propeller. 

In the same time the calculated coefficients for dimensionless circulation can 

be calculated by applying the (4.79) formula, as well as the induced speed field, thus 

the radius circulation distribution and the rotation angle can be calculated by applying 

the propeller momentum formula: 
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for which the integrative values have the following formulas: 
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 and: 
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mk and nk coefficients, as well as k = 0 – n are calculated by applying the 

principle of dimensionless circulation coefficients and induced speeds by effective 

solving the integrating equations above.  

For this, we use the following notations: 
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and: 
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as well as the additional notations: 
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Finally the resistant momentum formula will be obtained for the studied 

propeller, as a Fourier development set. If we limit this only at the first n terms, this 

will be expressed as: 

.M+M = )+(kM+M = )(M = M e

n

1=k

eee

n

1=k

eee k0kk0   sin__  (4.91) 

 

In a similar manner we can calculate the force variation for the thrust force 

developed by the propeller: 
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or by applying the following development set: 
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The above integrative equations are solved in separate manner, this generating 

the following formulas: 
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for which the harmonic coefficients are calculating by applying the indicated 

procedure for the ones specific to the momentum. 

With the additional notations: 
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and with the resultant expressions for the module and the initial phase 

expressed as: 
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The harmonic analysis for excitations generated by the thrust force of the 

propeller will be: 

    T + T = +kT + T T = T k

n

=k

0ek

n

=k

0
k

 
11

sin  (4.97) 

  

 In the previous formulas ρ symbolizes the water density, while the harmonic 

order k is a reference at the propeller rotation period: 

p

e

z
T


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2
 (4.98) 

 

 For the presented propeller being driven by the Sulzer RND90 main engine for 

which the free vibrations calculations have been presented in the for 4.1 paragraph, 

having the propeller diameter equal to 6,4 meters and being fitted with 4 propeller 

blades, tests have been carried out on the ship model at a 1:30 scale, in the cavitation 

tunnel. The measurement section had a 3 meters length, water speed was 6 m/s. The 

ship hull model has been made out form fiber glass enforced polyester and the 

propeller model has been made out of aluminum. In this manned the distribution of 

speeds in the propeller disc, starting from which the thrust force and the momentum 

have been calculated by integrating these distributions. This method is purely 

theoretical-experimental. The measurements also continued by calculating the 

propeller induced excitations on the exact model by using a complex installation and 

its diagram has been presented in the 4.15 figure. 
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Figure 4.15: Measurement chain diagram for induced excitations by the 

propeller in the shaft line 

 

 The components presented in the above figure are listed below: 

 1 – H-44 dynamometer; 

 2 – DA 3414 HBM amplifier; 

 3 – D 300 Kienzle printer; 

 4 – Switcher; 

 5 – HP-1220 oscilloscope; 

 6 – Dynamic analyzer for 2120 B&K specter; 

 7 – 2307 B&K recorder; 

 In the below tables, 4.8 and 4.9 the results of calculations made in the basis of 

this analytical method have been presented, as well as the ones made on the model, 

while the 4.16 and 4.17 figures present the variations of crank angle for shaft line 

excitations induced by the propeller for the above mentioned engine, in comparison 

with the measurements made on the model. 

 

Table 4.8: Shaft line calculated excitations modules and phases induced by the 

propeller 

k M ek
 [kNm]  ek

[rad] 

Tk [kN]  ek
 [rad] 

1 21.52976 0.35145 31.42708 0.43692 
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2 4.00369 0.72219 7.37728 -1.11682 

3 3.75362 -1.19870 5.44444 -0.14334 

4 1.47499 -1.12340 2.71710 -0.96497 

5 0.92748 1.37264 2.34912 -1.33242 

6 0.59780 -0.09851 1.21430 1.28976 

 

Table 4.9: Shaft line measured excitations modules and phases induced by the 

propeller 

k M ek
 [kNm]  ek

[rad] 

Tk [kN]  ek
 [rad] 

1 24.20741 0.83240 32.26122 0.47213 

2 3.50012 0.80263 6.00541 -1.46412 

3 2.98531 -1.10824 4.97780 -0.25139 

4 1.10025 -1.15824 2.63916 1.05412 

5 0.81088 1.15824 1.98251 -1.05412 

6 0.25452 -0.10624 1.20045 1.29467 

  

 The comparison between the measured and calculated variations for 

excitations induced by the propeller in the shaft line of the considered main engine 

towards the average value of effective dimensions is given in the 4.10 table. 

 The notations made in the 4.10 table are T-T =  T minmax  and 

T-T =  T minmax . 

  

 

 

 Table 4.10: Comparison between calculated values and measured ones for 

the propeller induced excitations 

Load type Realized Recommended 

  Bureau Veritas ITTC*81 

(T)calc / T0 5.22 % 212 % 1..5 % 

(Me)calc / Me0 5.20 % 312 % 15 % 

(T)mãs / T0 5.80 % 212 % 15 % 

(Me)m_s / Me0 7.65 % 312 % 15 % 

* The 16th International Towing Tank Conference 



 

184 
 

  

 

Figure 4.16: Graphic variation of thrust force depending on the rotation angle 

 

 

 

Figure 4.17: Graphical variations for the propeller momentum depending on the 

rotation angle 

 

 Variations have been recorded for harmonic amplitudes with predominant 

orders, k = 1 and k = 2, these representing 2.11% and 0.0004 % for propeller 
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momentum, as well as 2.28% and 0.0005% for the thrust force towards the average 

values of these dimensions, in comparison with the average values equal to 3.16% and 

0.005% and 5.80% and 0.005% for the same measured dimensions. 

 It can be noticed that variations are very close in value for the results obtained 

after the analytical calculus and the measured values, all values being in the range 

recommended by the Bureau Veritas naval register [103]. This is a classification 

society that owns one of the most important data base regarding the vibration field 

onboard merchant ships. 

 Thus, the obtained results applying the analytical calculus can be considered a 

basis for the next undertaken study. 

 

4.3 Shaft line forced vibrations for marine main engines 

 The analysis of shaft line excitations for marine main engines previously made 

allows the calculus of forced vibrations for these ones. Thus, tangential forces 

stimulate torsional vibrations, while the radial ones stimulate the bending vibrations, 

while the ones induced by the propeller mainly stimulate axial vibrations of shaft 

lines. 

 The first two excitation types are generated in the hypothesis of geometrical  

and mass identity of engine drives which are characteristic for each engine cylinder 

and this hypothesis is currently being accepted because there are any significant 

difference in real cases. Additional, presented methodologies take into account the 

individual evolution of fluid engine in every cylinder. 

 The 3rd excitation category, the ones induced by the propeller in the shaft line, 

have been calculated applying an analytical method with the condition of knowing the 

geometrical and functional characteristics of the certain propeller. The main working 

hypothesis applies the ideal flow characteristic taking into account that all swirling 

nets are free and are helicoidally perfect in an upstream infinite domain, because they 

override only the first area, where the propeller is being fitted. Using the shape 

considered for the speed distribution and the flow model the fact that propeller is fitted 

in the aft part of the hull is taken into account. 
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 In the following paragraphs, in the first phase the calculus of individual 

vibrations will be studied, according with the one made in the 4.1 paragraph. 

 The undertaken study presents and important interest for the calculus, 

numerical methods being applied for coupled vibrations of shaft lines, while in the 4.4 

paragraph all excitation types will be applied for the propulsion system model. 

 

4.3.1 Forced torsional vibrations for marine main engine shaft lines 

 For a start, the example of the mono-cylindrical engine presented in the 1.2.2 

and 4.1.1 paragraphs, as well as the one presented in the 1.18 figure, will be used. The 

system response at forced torsional vibrations are a practical solution for the entire 

motion equation system as presented in the (4.3) and (4.5 ) formulas, obtained by 

including the excitation term from the right part. If the 2nd excitation term is constant, 

in the first one two excitation sources will be included and these ones are generated by 

the gas pressure effect and the inertial effects through the centripetal coefficient. 

 Thus, the first term will be expressed by the following formula: 

    





  



1
0

k
pppwp kp

TTRTRcAp   (4.99) 

  

 in the above formula Tp0 is given by the (4.45) formula and Tpk is given by the 

4.46 formula. It has to be mentioned that     pp  factor is being developed in a 

Fourier set as in (1.97) formula and it depends on the specific rotational speed and the 

load applied on the engine. Thus, for a complete analysis of torsional vibrations the 

harmonic coefficients presented in 4.2.1 and are variable depending on the operation 

conditions. 

 As it has been shown in the 4.1.1 paragraph, the centripetal stiffness coefficient 

has been linearized, being obtained by the right member of the first motion equation: 

  





1

2

k
ak

TRC  (4.100) 
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while Tak is given by the (4.48) formula, still with a harmonic sum. R remains 

the crank radius. 

Having in mind all these notations, the vibrating motion of those two discs that 

are simulating the real oscillatory system will be given by the formula given in the 

references No. [15], [25] and [94]: 

 





1

sincos
k

kkj
kDkC

jj
 (4.101) 

 

The complete study of torsional vibrations on the shaft line is being presented 

in a diagram manner as in the 4.1.1 chapter, by means of a multidimensional flexible 

system which contains equivalent discs for engine drives, flywheel and propeller 

having the purpose of calculating the own pulsation regime and own vibrations shapes 

into the system. Keeping in mind the excitations generated by the engine and the 

propeller, on the bases of the model presented in 4.18 we can calculate forced 

torsional amplitude vibrations which can occur at different operational regimes. 

The first stage, the one in which own vibrations modes acting on the shaft lines 

are calculated, is being accomplished by applying the Holzer-Tolle method, that 

allows us the calculate the excitation degree for certain harmonic elements for engine 

momentum by expressing their capacity of generating torsional vibrations on shaft 

lines. In this manner the own pulsation with a 1st degree has been calculated as ωOI  = 

46,351 s-1, which is very close to the valued measured during sea trials, as ωOI  = 

48,380 s-1. The mentioned values are available for the same type of main engine kept 

under surveillance, being the same one as in the case of free vibrations, a Sulzer 

6RND90 marine main engine. 

Θkj symbolizes the relative amplitude of own torsional vibrations for all discs 

simulating engine drives and θkj is the off-set between the excitatory momentum with 

an k harmonic order acting on the j order disc and the torsional vibration for the first 

disc, tied up in between by the following formula: 

 jk
k=

j
 (4.102) 
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in the above formula θj symbolizes the angle between the crank with a j order 

and the cylinder axis facing it. In this way the excitation degree seen as a dimension of 

k order harmonic component for the engine moment will stimulate forced torsional 

vibrations on the shaft line of the above mentioned engine as: 

2

1

2

1

cossin 
















  kk

i

=j

kk

i

=j

k jjjj
+=E  (4.103) 

 

this having a graphic representation in the 4.20 figure. In the previous 

formulas, I symbolizes the cylinder number, while n symbolizes the total discs number 

from the equivalent oscillatory system of the shaft line. On this basis forced torsional 

vibrations for the free end calculus using the approximate energetic method [91] will 

lead, in the first phase, to the angular static deformation given by the (4.104) formula, 

in which ω0γ represents the own pulsation with an γ degree, while Jj are the 

mechanical inertia momentum for all oscillating equivalent system discs shown in the 

4.18 figure: 





 kj

n

=k

0

kk

s

j

k 1

J

E|M|
=

2

1

2
  (4.104) 
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Figure 4.18: Equivalent oscillating system for Sulzer 6RND90 main engine with the 

diagram of excitation momentum and all the compensations 

 

 

Figure 4.19: Flexible disc-section element diagram from a flexible equivalent 

oscillating system 

 

From this representation, vibration amplitude at shaft line free end has been 

calculated by applying the dynamic amplifier Ak mentioned in different methodologies 

[91] with the following formula: 

 skk k 11 A =  (4.105) 

 

the calculus formula being valid only for the harmonic component of the 

engine momentum that can generate resonance in the operation regime range close to 
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the normal engine functioning regime: 4
30

0













n

I

nk , nn being the nominal 

rotation speed  (122 rpm). For all harmonic components of the engine momentum that 

don’t act in the rotation range of the engine, the compensation effect can be neglected, 

thus allowing the calculus for torsional amplitude vibrations to be done by applying the 

Holzer methodology, as mentioned in the No. [89]. That is why the theoretical bases and 

the calculus results for amplitude torsional vibrations which are forced compensated will 

be presented by applying fast calculus methods, such as the transfer matrix method 

[MMT]. 

 

 

Figure 4.20: Harmonic order excitation variation degree 
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 The general motion for the entire equivalent system from the 4.18 figure can 

be written as a matrix: 

[𝐽]{𝜃} + [𝜉]{𝜃} + [𝐶]{𝜃} = {𝑀}  (4.106) 

 

 according with the general equation (3.1) applied on the torsional vibrating 

phenomenon. [J] is the diagonal matrix of mechanical inertia momentum which are 

being reduced at the rotational axis, [ξ] is the band matrix of all compensating 

coefficients in the shaft lines, [C] is the torsional stiffness matrix for all sections 

between two discs, {M} and {θ} are the column vectors for excitation moments and the 

ones for the torsional deformations. 

 If we isolate a random disc with a J order along with the flexible section 

without a mass as shown in the (4.19) figure we will take into account the 

compensation in the piston-cylinder group, in the crankpins of a single crank, as well 

as the compensation on the flywheel and on the propeller disc and by applying the 

experimental formulas form reference No. [91], the following formula will be 

obtained: 

n

M
=rJ

k
=rJ

+k
=J=r

e

evol0volcil0lagcil0cil IkIkjIj

030;
001.0

;
100

6.02.0
;01.0   (4.107) 

 

where Jcilj can take any value in the range 1 – 6, Jvol = J1, Me0 is the average 

momentum developed by the propeller and k is harmonic order, while n is the 

propeller rotation (equal with the one of the engine). The values calculated are being 

concentrated in the 4.11 and 4.12 table. 
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Figure 4.21: Free end torsional vibration amplitude variation at a free end for 

the engine with a harmonic order 

 

The excitation momentum with a k order acting on the j disc has a similar 

force equal with the one given in the (4.50) formula, multiplied by the value of the 

crank radius R. 
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Table 4.11: Mass and torsional stiffness characteristics for the equivalent 

oscillating system 

Disc 

number 

Jj [Nms2] Cj [109Nm] rj [Nms] 

1 8290.0 1.1568 3842.5437 

2 8046.2 1.1568 3729.5387 

3 8046.2 1.1568 3729.5387 

4 8046.2 1.1568 3729.5387 

5 8046.2 1.1568 3729.5387 

6 8290.0 0.7235 3842.5437 

7 4293.9 0.0784 k 1 1990.2 

    2 99.5 

    3 66.3 

    4 49.7 

    5 39.8 

    6 33.1 

    7 28.4 

    8 24.8 

    9 22.1 

    10 19.9 

    11 18.0 

    12 16.5 

8 73120 - 243909.84 

 

 By introducing the term with the 1st order derivative in the matrix equation 

(4.106) the calculus leads in an automatic manner to the extension of the Holzer 

procedure in the complex plan, which can be algorithmised in an elegant and compact 

way, by applying the transfer matrix procedure. The extension in the complex plan 

also imposes the complex shape of simulating components for engine momentum, as 

they are given in the above (4.19) figure, as it follows:  

,1-=i ,Mi+M=M k

Im

k

Re

k jjj
 (4.108) 
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for which the real and imaginary parts obtained by equation identification 

(4.50) is written for a stimulating momentum by multiplying each member with the 

crank radius, with the following formula: 

),eMRe(=M
i

kk jj



 (4.109) 

 

and they will have the following expressions: 

,kn)B+B(-knA=M japjpk

Re

kk jk j
j

 sincos  (4.110) 

 

as well as: 

Im

jk
jk

p j
jk

p ka jM = A kn - B + B kn . 

 


sin cos   (4.111) 

 

Table 4.12: Compensating coefficients in the crankpins for engines 

depending on the harmonic order 

k 1 2 3 4 5 6 

kj [Nms] 1491.8 1864.7 2237.7 2610.6 2983.6 3356.5 

k 7 8 9 10 11 12 

kj [Nms] 3729.5 4102.4 4475.4 4848.4 5221.3 5594.3 

 

It has to be restated that in the previous formulas the harmonic coefficients are 

proportional with the ones from the (4.47), (4.48) formulas and the ones from the (4.6) 

table and that means that the proportionality constant is R, while δ and nj have the 

same meaning as the terms specified in the 4.1.1 table. 

For the calculus of forced torsional vibrations acting on the shaft line using the 

transfer matrix method we shall highlight the point matrix and the field matrix for 

each element individually according with the No. [15], [25] and [70] reference, as 

stated in the following form: 
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and: 
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Thus, the following formula will be generated: 

        1 j

D

kjkjk

D

jk
ZPFZ =  (4.114) 

 

for which [Zk]
D

j is the status vector posted at the right side of the j order 

element from the 4.20 figure, depending on the one of the previous element, with the 

following formula: 

    T

j

Im

k

Im

k

Re

k

Re

kk 1 M  M  = Z   (4.115) 

 

for which T is, in fact, the matrix trans ponding operation. 

If the (4.114) is being applied in a complex form, as being marked by the 

above bars, the entire system specified in the 4.18 figure will have the following 

formula: 

            S
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The torsion momentum from the left side has to be null (the superior S order): 

  = M k

S

0
1

 

or  (4.117) 

    0Im

1

Re

1


SS

kk
MM  

the mathematical operations indicated in the (4.116) formula are considerably 

reduced generating the calculus reduction for the second and fourth matrix column 

from the [Pk]1 matrix. 

In order to explain n order point matrix we will have to write the harmonic 

component with a k order for the torsional momentum presented in the (4.91) formula 

under the following form: 

 
epee kkk

+kzM = M sin  (4.118) 

 

in which zp is the number of propeller blades, while |Mek| module and the 

initial phase φek are given by the second relation form the (4.89) and (4.90) sets of 

formulas, having the numerical values presented previously in the 4.7 table. In the 

(4.118) formula, the harmonic order has been reported at the rotation period of the 

propeller according with the (4.98) formula. This moment can be rewritten under a 

complex form, similar with the complex formula of engine momentum (formula 

4.108) and by identifying the (4.118) formula we can obtain the real and imaginary 

parts of the harmonic component for the featuring propeller momentum: 


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
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M = M 
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eee
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eee
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kkk

kkk
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sin
 (4.119) 

 

having this knowledge the n order point matrix has the following form: 
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The [Bk] matrix from the (4.116) formula can be rewritten as: 
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The right limiting conditions will be imposed (with a superior D index), 

analogue as the ones from the (4.117) formula: 

  = M n

D

k
0  
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and these lead to a linear equation system with two unknown values: 
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Thus the 
Re

1
  and 

Im

1
  components for the status vector [Z1]

s, as well as the 

total value of the torsional vibration amplitude for the first disc: 
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The results for the 12 harmonics are being presented in the 4.21 figure, which, 

in fact, shows the amplitude variations calculated through the MMT global method, in 

comparison with the measured values during sea trials onboard as mention in the 

reference No. [112]. 

The time variation mode can be calculated for the amplitudes by composition 

after the following formula: 

   kk = 
kk jj

=k

j coscos ImRe

12

1

 (4.125) 

 

with the graphical representations in the No. [15] and [25] references, as in the 

following figures. 

The difference between 4.1 and 4.23 figures is represented by the spatial 

feature, which is tridimensional for the last mentioned one: sections are being 

obtained in which vibration amplitude has a minimal value. The calculus by applying 

the matrix method avoids all simplifying hypothesis from the approximation 

amplitude calculus generally used for practical applications, as mentioned in the No. 

[67] reference. 
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Figure 4.22: Amplitude time variation for torsional vibration: a – for the first 

disc, b – for the last disc (the propeller); in the case of a shaft line fitted on a 

marine main engine Sulzer 6RND90 
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The presentation calculation refers to shaft lines directly fitted to the engine 

that drives them. These are situations for which the propulsion system contains a 

semi-fast engine directly fitted with a rotation reduction gear needed to reduce angular 

speed needed to drive the propeller. Figure 4.24 extracted from reference No. [59] 

shows the oscillatory equivalent system and the first six own vibration modes for a 

marine propulsion system with two Sulzer 8ZA engines, with a four stroke 

functioning, developing a 4500 kW (6120 HP) power at a 510 rpm nominal speed. 

These engines fit an icebreaker type of ship with a propeller with a rotation speed 

equal to 138,7 rpm, thus the transmission ration for the reduction system is 3.67. 
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Figure 4.23: Torsional vibrations variations for shaft lines of a Sulzer 

6RND90 main engine on harmonic orders equal to: a) k = 3; b) k = 6; c) k = 9; d) 

k = 12  
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Reference literature such as [67] and [91] show an even more rigorous calculus 

procedure for this kind of shaft lines coupled to internal combustion engines using 

mechanical transmission systems or simple or ramification shaft lines. In the same 

time it is possible to use mixt solutions such as using a propulsion slow turning engine 

cu a PTO-generator fitted on the shaft. The 4.25 figure presents this practical situation, 

as in the case of the first three own vibration ways for a Sulzer 7RTA62 main engine 

with a 11106 kW power at a nominal rotation speed equal to 88 rpm, as stated in the 

No. [59] reference. 

 

 

Figure 4.24: Double ramification system fitted with a reduction gear and the 

Sulzer 8ZA40S main engines as well as the first six own vibration modes diagram 
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4.3.2 Forced bending vibrations for marine engine shaft lines 

In this phase, as in the previous paragraph, we will only study the individual 

type of vibration, followed up by the analysis of all coupled vibrations, out of which, 

by particularizing we can pick out the dynamic behavior of the shaft line at these 

certain individual loads. 

Real bending vibrations, as it has been shown in the 4.4 paragraph, are being 

generated in two plans, Oyz and Oxz, that is why, in the specific literature they are 

also being called lateral vibrations of shaft lines. This type of vibrations can be 

neglected in the case of shaft lines driven by marine main engines due to the enlarged 

stiffness of engine bearings. The phenomenon is mostly studied in the case of long 

shaft lines taking into account the swirling phenomenon, as explained in the reference 

No. [100] and [103] for the propeller, as stated in the 3.2.1 paragraph. In these cases 

the bending vibrations can stimulate structural load vibrations on the hull and the main 

engine. 

Between the calculus stages of torsional forced vibrations and the bending 

ones a set of difference occur, such as: 

- The system’s response to bending excitation vibrations which are the 

solution for an equation system with a four degree, due to the fact that two 

degrees of freedom occur, instead of one degree of freedom; 

- Dynamic model for the crankshaft which corresponds to a continuous 

environment and not to a discreet one; 

- The shaft line can be considered embedded, such as the propeller shaft in 

the aft post tube; 

- The limiting conditions at the consumer end of the shaft line can 

correspond to the free articulation, to the support and to the embedment. 

The main difficulty in the calculus of forced bending vibrations is not the 

establishment of a calculation model, but the calculus for a set of parameters, such as 

bearings stiffness. The calculus methodology specified in the No. [59] reference leads 

to the calculations of bending forced amplitude vibrations, keeping in mind the after 
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mentioned sources presented in the 4.2.2 paragraph, as well as the lateral forces 

variations developed into the propeller (as observed in the 4.15 figure), acting 

according with the fundamental frequency given by the propeller blade number (as 

mentioned in the 4.98 formula). When resonance occurs, the only possible measure 

that can be taken is the one consisting in the processing of supporting bearings 

stiffness by means of constructive solutions. These considerations are illustrated in the 

4.26 figure presenting the bending forced vibrations amplitudes for the shaft line, in 

case of a ferry-boat which is being propelled by 3 Sulzer 14ZAS40S main engines, 

with 7723 kW (10500 HP )power each. Calculation processes have lead at a critical 

bending frequency with a value of 6.8 s-1 for the central crankshaft, having a 43 meters 

length, this being a value that can be allowed for this type of ship because the 

propeller blade frequency is in the 0 – 11.6 s-1 range at a rotational speed equal to 174 

rpm. In order to avoid any resonance risks in the entire rotational speed working range 

values two additional bearings have been installed. This lead to an increased own 

frequency equal to 13.6 s-1 and this is how the propeller rotational speed has increased 

to 205 rpm, this being the nominal speed for this type of boat, as shown in the 4.27 

figure. 

 

 

Figure 4.26: Bending vibration amplitude variation for an intermediary shaft 

line for a marine propulsion system fitted with three Sulzer 14ZA40S engines 
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Figure 4.27: Bending vibration amplitude variation for an modified intermediary 

shaft line for a marine propulsion system fitted with three Sulzer 14ZA40S 

engines 

 

4.3.3 Forced axial vibrations of marine main engines shaft lines 

Forced axial vibrations study can be limited, unlike the torsional one, just at 

the stage of the study of the subsystem formed from the engine crankshaft, the 

intermediary one and the propeller shaft. This is due by the fact that the excitations of 

this type of vibrations are not transferred by PTO ramifications in the complex 

systems. The vibrations calculus is based on the generic equation expressed in (3.1), 

having the same nature as the calculus of torsional vibrations due to the analogy 

between the two types of vibrations. The occurring specific issues that can occur are 

tied upon the exact calculus of axial stiffness and this has an analytical solution (as 

seen in the 4.1.3 paragraph), as well as a numerical solution (as expressed in the 4.1.3 

paragraph) and an experimental one. This is also a valid calculus compensation 

coefficients, this thing being usually done in an experimental manner. Regarding the 

force vectors of axial stimulating vibrations this is given by the thrust force of the 

propeller (4.97), as well as the axial gas pressure components and the mass inertia 

having an alternative motion, these last categories being excitation forces that can be 
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highlighted in the case of a study of the coupling phenomenon for all vibration types 

generated on shaft lines driven by marine main engines. Thus, in the same manner as 

in the case forced bending vibrations, we can extract the individual type of vibration 

representing a major study subject for marine propulsion systems, most of them 

complex or coupled and this study is being presented in the next paragraph. 

4.4 Marine engine shaft lines coupled vibrations 

Due to complicated geometrical shapes of the crankshaft it’s deformations can 

have a complex characteristic this leading to the coupling of certain vibration types 

that can be performed by the main engine. 

 

4.4.1 Mathematical model of shaft lines driven by marine main engines 

Considering the crank in the No. [91] reference a part of the crankshaft upon 

which a torsion momentum Mz acts (as shown in the 4.28a figure), it can be observed 

that this element has the tendency to generate torsional vibrations, as well as bending 

vibrations in Oxz parallel plans, these two types of vibrations forming a set of coupled 

vibrations. 

Acting on the crankpin with a variable Fy force placed in the crank plan (as 

shown in the 4.28b figure) it can be noticed that it has the tendency to generate 

bending vibrations in the Oyz plan, as well as axial vibrations along the Oz axis. 

Thus, the crankshaft geometrical configuration generates the occurrence of 

complex vibrations on it representing coupled modes for simpler vibrations. Thus, 

torsional vibrations stimulate bending vibrations as well axial vibrations. 
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Figure 4.29: Effect of coupling torsional and axial vibrations 

 

In the particular case of marine main engines coupled in a direct manner with 

the propeller the comparisons made between the calculations and the measured for 

vibrations type previously specified lead to the following observations, according to 

the No. [58] reference: 

- Axial displacements are influenced by the torsional vibrations: it can be 

noticed that the axial displacement increases for engine rotations in the 

area of critical torsional rotations; 
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- Torsional vibrations amplitude is not influenced by the axial vibrations; 

- The effect of vibrations coupling is even more highlighted if the torsional 

critical rotations and the axial ones are close enough in dimension, and this 

phenomenon is being presented in the 4.29 figure.  

The overall vibration coupling phenomenon onboard ships has been presented 

in the 3.1 figure. 

From the information stated in the previous chapters it can be concluded with 

the fact that one of the most important issues which has to be solved is that of finding 

the propulsion system for which the vibration effect can generate excessive vibration 

levels that can’t be used in calculation procedures, these being the so-called standard 

methods presented in the 4.2 and 4.3 paragraphs. The implicit solution implies the 

modification of the calculus model for the entire shaft line taking into account the 

entire range of relevant freedom degrees. 

 

Figure 4.28: Torsional, bending and axial vibration coupling phenomenon 

graphic model 

 

The creation of a more complex model is being imposed by the fact that the 

crankshaft is being supported on more than two supports, this being a static undefined 

system. In the same time the supports modeling process has to take into account the 

existence of certain slacks in the bearings, these depending on the execution 

tolerances, as well as the usage level generated during operation. 
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In the below figure a shaft line of the engine under observation (Sulzer 

6RND90 main engine) is being presented, the crankshaft being presented in a graphic 

manner by straight bar elements. 

A much simpler calculus model proposes taking into consideration of a single 

section of the crankshaft which has a crankpin limited by two arms and the adjacent 

bearings, which are simply supported. In this case the influence of geometrical 

parameters on the values of internal efforts is being reduced. This model turns out to 

be much simpler and acceptable in order to do the calculus for pre-dimensiong, but it 

doesn’t allow the study of influence on different factors influencing the crankshaft 

resistance. A calculus model that has to analyze the entire crankshaft by using finite 

elements, as it has been shown in the 3.3 figure is not rational due to the great number 

of finite elements in the meshing process, especially if tension cluster would be taken 

into account. This kind of spatial model does a better approximation on the real 

situation, but also contains lesser elements on each section, thus, offers less 

information regarding deformation and tension dimensions. 

Keeping all these in mind the spatial structural model chosen contains straight 

structural bars, as shown in the 4.29 figure, the shaft line being considered as a bar 

system with even distributed masses, this being similar with the arms lengths, as well 

as masses and inertia momentum focused in certain tension clusters. Through this 

model, which simplifies the entire issue in a reasonable manner, we can obtain 

information regarding the dynamic behavior of the shaft line. 
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Figure 4.30: Shaft line model for a Sulzer 6RND90 main engine 

 

By supporting the entire structure can be studied by taking into account two 

ways: embedded crankpins, these allowing the rotation motion only around the Oz 

axis; supported bearings , these allowing the rotation motion only around Ox, Oy and 

Oz axis stopped only by the translation motions around Ox and Oy. The real situation 

is somewhere in between the two cases, a new engine being closer to the first situation 

in real operation, but after the first slaks occurs in the crankpins, the real situation 
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tends to be closer to the second case. Thus, the structure is being considered meshed 

for a real case implying the real case of the shaft line for the Sulzer 6RND90 main 

engine, for this using a number of 40 finite elements and 41 nods. In 1, 39, 40 and 41 

nods, as well as in 5, 11, 17, 23, 29 and 35 masses and moments are being 

concentrated. For the first mentioned nods series the concentrated inertia masses and 

moments correspond to the ones of the axial bearing flange, of the flywheel and of the 

propeller, while the masses and moments focused in the nods of the second category 

are generated by engine drives reduction corresponding to the cranks. The loading 

situation of the structure has been done by applying two forces in the middle of the 

crankpins, thus the nods 5, 11, 17, 23, 29 and 35 are on a tangential and radial 

direction, being given by the (4.50) and (4.59) formulas. Their components are 

resulting by decomposing the elements on the axis of the global system from the 4.30 

figure, given by the following formulas: 

     

     
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


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nikZZnikZZ

nikTTnikTT

jyjjxj

jyjjxj

cos;sin

sin;cos
 (4.126) 

 

the dimensions occurring in the above formula have the same meaning as the 

ones mentioned in the 4.2 paragraph. 

The load applied on the last node of the proposed structure is being given by 

the harmonic formula for the momentum and for the propeller thrust that have been 

calculated in the 4.3.3 chapter with the (4.91) and (4.97) formulas. 

 

4.4.2 Free coupled vibrations for marine main engine shaft lines 

The shaft line coupled vibrations calculus in the case of a marine main engine 

can be meshed as a spatial structure made out of simple bars and this can be done 

towards the general reference system known as the global reference system and noted 

with Oxyz, this being a straight system with its origin in the 1st order node. 

For reasons regarding the improvement of processing data and for the 

flexibility of the calculus software we can consider a local reference system which is 
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being attached to every single bar. The local reference system has to fulfill the 

following elementary conditions in order to allow a better numerical processing stage: 

- Its origin is the I node with I < J; 

- The Ox axis for the entire system is the same with the longitudinal axis of 

the mentioned bar; 

- Oxy plan is defined by the Ox axis and a random K number placed in the 

middle of the first quadrant; 

- The Oz axis is being chosen as straight on the Oxy plan, thus, the reference 

system is straight and has the axis orientation identical with the one of the 

global system. 

The stiffness matrix are calculated towards the local reference system and the 

bar mass coefficients and data regarding the load acting on the bars is being 

introduced in the software. 

Along the entire calculus procedure the positive direction for all forces, 

momentum, arrows and rotations is being given by the positive axis direction. 

On single straight bar displacements in space, I – J, is being considered as 

positive, just like in the 4.31a figure and this is how the vector is being composed on 

the column direction: 

   T

jzjyjxjjjiziyixiii

T

jiji
wvuwvu 

 (4.127) 

 

in the above formula the line above the symbols mark the local axis system, 

while the superior index T marks the matrix trans ponding operation. In a similar 

manner the efforts at the elements end are all positive, just like in the 4.31b figure, 

together being composed in the following column vector: 

   T

jjjjjjiiiiii

T

jiij M M M F F F M M M F F F==
zyxzyxzyxzyx   

 (4.128) 
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Applying the usual formulas mentioned in the No. [68] and [75] reference for a 

single point current displacements z, depending on the ending displacements, thus, 

from this point forward we can calculate the corresponding efforts, by individualizing 

the obtained results for z = 0 and z = 1 (finite element length), allowing us to calculate 

the value of i
   and j

  vectors. Finally the matrix formula between efforts and end 

bar displacements I – J can be written in a concentrated manner: 

)()()( eee r   (4.129) 

 

in the above formula 
 er  is the stiffness matrix for the I – J bar, which, in 

general, is being considered the finite element (e), according to the No. [17] reference. 

By applying the virtual mechanical work principle to the finite element (e) we 

can generate the formula for equivalent nodes forces and momentum: 

Θ(𝑐)′̅̅ ̅̅ ̅̅ =  𝑚̅(𝑐)Δ̅(𝑒) + 𝑟̅(𝑐)Δ̅(𝑐)  (4.130) 

  

where m e( )
is the element masses matrix: 


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
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
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ijiie

mm

mm
m )(

 (4.131) 

 

for which all internal elements pq
m , p and q have the i and j successive 

values. Here on we can generate the following general formula, that takes into account 

all types of individual vibrations types (torsional, bending and axial): 
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Figure 4.31: Angular and linear displacements diagram for a finite element and 

the load process with different loads 
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 (4.132) 

 

in the above matrix ρ symbolizes the density, A the bar transversal area, l the 

length and Ip the polar inertia momentum for it. The coefficients value are given in the 

4.13 table.  

 

Table 4.13: Mass matrix coefficients values for the finite element 

Index 

(p,q) 

a11pq a22pq a26pq a33pq a35pq a44pq a53pq a55pq a62pq a66pq 

(i,i) 140 156 22 l 156 22 l Ip/A -22 l 4 l2 22 l 4 l2 

(i,j) 70 54 -13 l 54 13 l Ip/2A -13 l -3 l2 13 l -3 l2 

(j,j) 140 156 -22 l 156 22 l Ip/A 22 l 4 l2 -22 l 4 l2 

(j,i) 70 54 -13 l 54 13 l Ip/2A -13 l -3 l2 13 l -3 l2 
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The following stage is represented by the reference local system rotation until 

its axis will have the same direction and the same orientation as the axis of the global 

reference system. This thing has been done by applying an original methods specified 

in the No. [19] and [65] references taking into account the conditions that have to be 

satisfied by the local reference system, as they have been shown in the first part of the 

paragraph. In this manner, the rotational matrix L containing directional cosines, has 

been generated. As a consequence the local reference system translation will be done 

in automatic manner and the two system will be identical when the mass and stiffness 

matrix will be assembled for the entire structure. Thus, out of (4.130) formula will 

become: 

  (4.133) 

 

this is also valid for the (e) element in the global system context, having: 

 

  )()(

)()(

eTc

eTc

LmLm

LrLr




 (4.134) 

 

The mass and stiffness matrix have a 12X12 dimension for each elements and 

12n X 12n for the entire structure. Some of the nodes (as shown in the 4.30a figure) 

are representing masses and concentrated efforts. Keeping in mind the rotation inertia 

for concentrated masses in a random g node, the corresponding vector for all 

displacements will be: 

 T
zyxg

wvu   (4.135) 

 

That is the nodal mass matrix will have the following form: 
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In the above matrix Jx, Jy and Jz are the inertia moments for the m mass, from 

the g node, being reduced at the reference global system axis. 

The disrupting external forces from the g node can be either way, forces or 

couples, thus, these can be grouped into the following column vector: 

 T
ggggggg zyxzyx

MMMFFFF   (4.137) 

 

Applying the d’Alembert principle, from the dynamic equilibrium condition 

for the g node the following matrix equation will be obtained: 

  (4.138) 

 

By writing the motion equations for all meshing structural nodes the 

differential equation system that describes the dynamic behavior for the entire 

structure will be generated, which has the following matrix shape: 

MΔ + RΔ = F   (4.139) 

 

In the above formula the Δ vector is seen as an unknown value for all 

displacements: 

 T
ng
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21  (4.140) 

 

M is the mass matrix expressed as: 
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R, the stiffness matrix expressed as: 
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while F is the disrupting forces vector with an external influence, having the 

formula expressed in (4.137). 

In the (4.141) and (4.142) formulas the following notations have been used: 

II

g

I

gg
eee    (4.143) 

 

in the above formula eg’ are all the elements from the g node that have the 

opposite end h>g and eg’’ are all the elements from the g node that an opposite end h 

< g. In this manner, the matrix assembling for mass and stiffness leads, at the strip 

form, in a more subtle way. 

The modes and own frequencies of coupled vibrations are complex and can be 

calculated by developing the homogenous matrix equations specific to (4.139) 

equation. By supposing that the harmonic shaped displacements can lead to a linear 

solution system the calculus condition for a certain usual solution is: 

 2D   (4.144) 
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for which D = M-1 R is the dynamic matrix for the entire structure, the strip 

matrix having a strip width equal to 12. The (4.146) equation represents a vector and 

own value issue and it can be solved by applying the matrix iteration method. 

 

4.4.3 Forced coupled vibrations for shaft lines of marine main engines 

In order to calculate the forced coupled amplitude vibrations for the suggested 

structure we have to assume that the answer at the harmonic stimulation has the same 

pulsation as the vibration, equal to kω. The calculus has been done by applying 

harmonic orders with an k order. Thus, the harmonic component of a column vector 

with a random order for the nodal displacements has the following formula: 

  
kk

FMkR
12 

  (4.145) 

 

this formula is being generated by applying the Gauss elimination method. 

Specific linear system dimension for the presented structure has an 246 order. Thus, 

finally we can calculate the average deformed fiber for the shaft line, by adding up all 

the relevant harmonic components: 


k

k   (4.146) 

 

In the final part of this theoretical part we also have to mention the fact the 

presented calculus method based on MEF is valid only for the stationary regime. In 

the same time, at the nominal calculus regime the compensation coefficients matrix 

could be ignored as mentioned in No. [58] and [91] references. 

 

4.4.4 Numerical calculus results based on the mathematical model with finite 

elements 

For the calculus of coupled vibrations of the shaft line a calculus program has 

been generated and its structure is being presented in the 4.32 figure. 
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MATR_TRANSF 

Calculates directional cosines matrix for the 

crossing from the local reference systems to the 

global reference system 

Defines the entering data: 

 Structure nodes number: 41; 

 The finite element number: 40; 

 Stiffness and mass assembled matrix dimension: 246; 

 Strip width for these matrix: 12; 

 Finite elements material density; 

 Transversal elements cross section; 

 Transversal and longitudinal flexibility module; 

 Inertia moments of finite elements towards the global reference system axis; 

 Global system coordinates for finite elements nodes, as well as for the points 

needed in order to define the local reference systems.   

FORTE_D 

Decomposes the thrust force and the propeller 

momentum in a harmonic set  

INC_NOD 

Loads all the nodes with tangential and axial 

forces decomposed on the global reference 

system 

INC_PROPELLER 

Loads the nod that represents the propeller 

COND_LIM 

Applies the limit conditions for the nodal 

displacements: axial displacement bounded by 

the node that represents the thrust bearing and 

the radial displacements bounded by the nodes 

representing the middle of the crankpins 

DATE_GLOB1 
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DATE_GLOB3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PULS 

 

 

 

 

 

 

MRSL 

Calculates the stiffness matrix for an element in 

the local reference system 

MMSL 

Calculates the mass matrix for an element in the 

local reference system 

MRSG 

Calculates the stiffness matrix for each element  

in the global reference system using 

MATR_TRANSF 

MMSG 

Calculates the mass matrix for each element  in 

the global reference system using 

MATR_TRANSF 

MR_STR 

Calculates the stiffness matrix for the entire 

structure (assembly) 

MM_STR 

Calculates the mass matrix for the entire 

structure (assembly) 

MATR_DIN 

Calculates the dynamic matrix for the entire 

structure 

PULSATIONS 

Calculates own values in an increasing manner  

for the dynamic matrix by using the matrix 

iteration method with an 10-3 error 
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TZ_FORCES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Logical diagram for the calculus program of coupled vibrations of 

shaft lines driven by marine main engines, based in the finite elements method 

  

 The results of own values (vibration own frequencies) are also given in the 

4.14 table and a comparison of these values is being done, between a Sulzer 6RND90 

main engine and a MAN K6SZ 52/105 main engine, fitted onboard a container ship 

with a 12500 tdw capacity, these ships being specific for the Romanian commercial 

fleet. The MAN engine develops a 4500 kW power at a rotation speed of 140 rpm, 

having the same configuration for the crankshaft and the same combustion order as 

the Sulzer main engine, but driving a four blade propeller with a 4.2 meter diameter 

(the one driven by the Sulzer main engine having a 6.4 m diameter). The comparison 

T_FORCES 

Decomposes all forces in a Fourier set for 

tangential excitation forces 

Z_FORCES 

Decomposes all forces in a Fourier set for radial 

excitation forces 

DISPL_ARM 

Calculates the modal displacements for the first 

12 harmonic components  

DISPL_SUM 

Calculates total displacements for all structural 

nodes  
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from the table below is being done between the own frequencies values for individual 

vibrations types and the coupled ones. 

  

Table 4.14: A comparison between own pulsations of individual vibration types 

and the coupled ones for two types of marine main engines 

Engine type Pulsation 

degree 

Torsio 

[s-1] 

Bending 

[s-1] 

Axial 

[s-1] 

Coupling 

[s-1] 

6RND90 I 46.351 10.764 18.167 28.274 

 II 187.351 49.987 42.103 70.071 

K6SZ 52/ I 83.287 20.054 31.559 36.014 

105 Cle II 201.405 68.426 77.892 79.238 

 

 The results of individual and coupled free vibrations presented in the previous 

table lead to the following conclusions: 

- Own pulsation values of the K6SZ 52/105 are higher than the ones 

corresponding to the Sulzer 6RND90 engine. This is explained by the fact 

that the inertia masses and moments are much lower for the first type of 

engine comparing it to the second one; 

- 1st degree own torsional pulsation is pretty close to the 2nd degree one, this 

phenomenon being more noticeable for the 6RND90 main engine. This 

suggests that there is a possibility of a coupling phenomenon occurrence 

between the 1st torsional vibration mode and the 2nd axial one, in the sense 

of its stimulation by the first one; 

- Own pulsations generated by torsional vibrations, for both types of engines 

have low values comparing them with the individual torsional ones, but 

they are higher in comparison with the bending and axil ones, indicating 

the fact that the coupling phenomena occurs between all individual 

vibration types; 

- Own pulsations of individual bending vibrating modes have the lowest 

values, the influence on the coupling phenomena being much lower in 

comparison to other individual vibration types, both axial and torsional; 
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- Own pulsations of coupled vibrations for the K6SZ 52/205 engine are very 

close in value with the own individual axial vibration modes. This leads to 

the conclusion that axial vibrations have a bigger influence in the coupling 

phenomena. For the same engine 2nd degree own pulsation of coupled 

vibrations is very close to the 1st degree of torsional individual vibrations 

and this fact confirms the occurrence of a hardened coupling phenomena 

between the respective vibration modes. 

On the basis of free coupled vibrations calculus, in the 4.33 and 4.34 figures 

the first modes of own complex vibrations have been presented, through torsional and 

axial bending components in two plans, for the 6RND90 and K6SZ 52/105 main 

engines. The representations of own modes have been made possible by retaining 

displacement values corresponding to the middle length of the crankpins. 

From the analysis of the own modes of coupled vibrations the following 

conclusions can be drawn: 

- Variation waves of own vibration modes for the two engines are very 

resembling, due to geometrical and operational characteristics very close to 

these ones; 

- For the 6RND90 main engine own individual vibration modes are alike the 

coupled vibrations, especially for torsional and bending vibrations (as 

shown in 4.1, 4.7 and 4.33 figures): for the torsional type the node 

corresponding to the 1st degree is generated on the propeller shaft, this 

being valid for the individual case, as well as for the coupled one, while for 

the 2nd degree mode, on the crankshaft engine. For the bending vibrations 

own vibration modes are identical in both cases; 

- Variation waves of own bending vibration modes are similar with the 

individual ones and the coupled ones, but the coupled vibration relative 

amplitude is lower and that marks a lower contribution of this type of 

vibration in the coupling phenomenon; 

- The influence of the axial vibration phenomenon in the coupling of shaft 

line vibrations for both engines is much more highlighted for the 2nd 
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vibration mode, in the 1st mode sign changes doesn’t occur, the amplitude 

variation being relatively lower; 

- The torsional coupled mode for the 1st degree vibration is very similar with 

the axial coupled one with a 2nd degree, which is, in fact, a single mode for 

bot type of engines and this confirms the previous suggestion regarding the 

coupling process between two vibration modes. 

In the 4.35 figure the average deformed fiber for a Sulzer 6RND90 main 

engine crankshaft is being presented and this is generated for the nominal functioning 

regime for which a frequency analysis has been done, which will be presented further 

on in the 4.36 figure. 

It has been highlighted that harmonics generate visible resonances. It can be 

concluded that the critical resonance occurs in the same time with the k = 6 order 

harmonic, while the influence of the k = 4 order harmonic (the first order harmonic at 

the propeller frequency) of axial induced excitations in the shaft line by the propeller 

is being lower enough, contrary with the expectations. Thus, the predominant 

influence on the axial vibrations is generated by the torsional vibrations, according 

with the coupling phenomenon described above. 

From the facts stated above, synchronized with the global presentation made in 

the 4.3.3 paragraph, it can be concluded that there is an importance for a certain 

special type of vibration generated by the nature and the dimensions of the amplitude 

and the specific excitations for marine propulsion engines and this is the axial one, 

being generated after the coupling phenomenon of shaft line vibrations. This issue has 

started lately to be tackled by engine designers and naval constructors, thus, special 

studies had not yet been done and this highlights even more the after mentioned 

phenomenon.  
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Figure 4.33: Own coupled vibration modes for the Sulzer 6RND90 main engine 
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Figure 4.34: Own coupled vibration modes for the MAN K6SZ 52/105 main 

engine 
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Figure 3.35: Deformed average fiber for a Sulzer 6RND90 marine main engine 

 

 

Figure 4.36: Axial vibration amplitude analysis in frequency for a free end in the 

case of a marine Sulzer 6RND90 main engine 

 

In the reference No. [59] the individual own modes for axial vibrations are 

presented, with and without vibration compensators for a Sulzer 7RTA62 main 

engine, shown in the 4.37 and 4.38 figures, as well as the forced axial vibration 
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amplitudes at the engine free end. This engines develops a 9340 kW effective power at 

a 78 rpm nominal speed. 

It can be noticed on this example that the axial vibration 1st mode has a form 

very close towards the one calculated for the 6RND90 and K6SZ main engines, as 

shown in the 4.33 and 4.34 figures and in all cases there is no sign change and that on 

its entire length, in the range of the axial bearing and the propeller, the relative 

amplitude is constant, this result being in resonance with the main purpose of this 

bearing. In exchange the second vibration mode records a single node and its position 

is placed, as a general rule, on the crankshaft. Own pulsation values for the Sulzer 

7RTA62 are: ω0I = 9.45 s-1 and ω0II = 24.6 s-1 for the situation of functioning with no 

axial vibrations compensator, and ω0I = 15.78 s-1 and ω0II = 26.22 s-1 when the 

vibration compensator is fitted. 

In the same time, it can be noticed the main engine 6RND90 axial individual 

vibration of own pulsation are placed in the same range of corresponding values for 

the two mentioned situations, with and without a vibration compensator, values 

mentioned in the case of the Sulzer 7RTA62 main engine. In the same time we can 

observe a reduction of axial vibration amplitude proportion of at least 1/10, as well a 

reduction from 150 kN to 80 kN for the force from the thrust bearing. In the same 

time, for the same specified engine, the comparison between measured values and 

calculus of individual axial vibrations is less favorable than the one specific for the 

individual torsional vibrations that have been checked in the previous paragraphs for 

the initial 6RND90 main engine. When the calculated own axial pulsations are very 

close in value to those measured (recording a 1 – 3 % difference) the axial amplitude 

vibrations can be different in the operational rotation range and this phenomenon is 

being explained by the occurrence of the coupling phenomenon of axial and torsional 

vibrations. 
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Figure 4.38: Individual axial vibration variation amplitude at the free end for the 

7RTA62 main engine: a – without a compensator, b – with a compensator 

 The issue of shaft line individual vibrations coupling phenomenon started, in 

this manner to be treated with a maximum degree of attention by the marine engine 
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designers, as it has been cited in the reference No. [58], in which the subject is being 

developed by using the finite element method. By using the NASTRAN software the 

comparative result have been obtained between the amplitude of torsional and axial 

vibrations with the values measured for a 6RTA58 main engine, with or without an 

axial vibration compensator, as presented in the 4.39 and 4.40 figures. In this figure 

the following notations have been used: 

- TT – torsional vibrations amplitude generated by the pure tangential 

excitation; 

- AT – axial vibration amplitude, generated by pure radial excitation; 

- TT + AT – total torsional vibration amplitude generated by both excitation 

types; 

- TA – axial vibration amplitude generated by the pure tangential excitation; 

- AA – axial vibration amplitude generated by the pure radial excitation; 

- AA + TA – total axial vibrations amplitude generated by both excitation 

types, followed by the comparison with the measured values. 

The analysis of these diagrams lead to the following conclusions: 

- There are no significant differences between TT and AA calculated using 

NASTRAN software and the ones calculated using standard calculations; 

- As it was expected, radial stimulation influence on torsional vibrations 

(AT) is not significant, in exchange it can be noticed that it plays an 

important influence of pure torsional excitation by harmonic order k = 6 on 

the axial vibrations, this phenomenon can be registered during operation at 

a rotation equal to 100 rpm. 

We can notice the fact that critical rotation with a k = 6 order is very close to 

the value of nominal rotational speed (this being 122 rpm for the 6RND90 main 

engine), thus the engine can’t operate at a nominal rotational speed unless an axial 

vibration compensator is fitted at the free end of the crankshaft. If the calculus is being 

redone in this new scenario it can be noticed that own torsional calculus (these being 

the critical torsional rotation). In exchange the own pulsation for the second axial 

mode changes in a significant manner, while the first axial mode remains constant and 
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this one is not being influenced by the axial compensator. This will, in effect 

influence, the own pulsation axial mode from 12 s-1 at 21 s-1, the mentioned resonance 

in the case the of no compensator fitted will be avoided by applying this principle. 

Even it has a certain influence on the torsional critical rotation with an I/6 

order the amplitude of axial vibrations at the crankshaft bow extremity at the nominal 

rotational speed is much lower: 0.8 mm and not 7 mm for the k = 6 order harmonic, 

while the amplitudes of the other harmonic orders will also be much lower. In this 

way, figure 4.39b presents the comparison between torsional vibration amplitude 

calculus with a I/6 order and the axial ones with a II/6 order, by applying the principle 

of the NASTRAN software, these being compared with the measured values. We can 

also highlight the fact that a coupling effect between the vibrations modes and types 

previously mentioned for 6RND90 and K6SZ main engines has been carried out, 

according with the 4.33 and 4.34 figure, by using the presented software. This 

program presents the advantage of a meshing for a crankshaft bent in a realistic 

manner, superior to the one presented in the No. [58] reference, as well as the 

disadvantage of not taking into consideration the compensations, but this does not 

mean that this has an influence on the calculus accuracy around the nominal operation 

regime. 

In the No. [99] reference a model based on the MEF method is also being 

used, being very similar with the proposed one, the calculus being done by using the 

ANSYS software but also including the compensations. This study has been done for 

an engine cu i = 8 cylinders, with a V configuration, four stroke functioning, with a 

crankshaft identical with a crankshaft for a i = 4 cylinder engine with an inline 

configuration and a four stroke functioning and having phase cranks. In the 4.41 

figure is being presented, as a comparison, the first four coupled vibration modes, for 

a spatial structure formed by bars obtained in a similar manner with the one form the 

present paragraph and one that has the same shape as the bent (as presented for Sulzer 

RTA main engines in the 3.3 figure). 



 

232 
 

The observed differences on these two last models are insignificant. That is 

why the complex MEF based model can be checked for the calculus of coupled 

vibrations which is not plausible in this case. 
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Figure 4.39: Axial and torsional vibrations amplitudes comparison for a Sulzer 

6RTA58 main engine without axial vibration compensator 
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Figure 4.40: Axial and torsional vibrations amplitudes comparison for a Sulzer 

6RTA58 main engine fitted with and axial vibration compensator 
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4.5 Experimental results for main engine shaft line vibrations 

measurements 

Experimental validation of the proposed mathematical model proposed for the 

calculus of shaft line coupled vibrations of marine main engine has been done by 

applying a simple comparison method between the axial vibration amplitudes resulted 

after applying the presented methodology in the previous paragraph and the ones 

measured onboard during sea trials. 

In order to do so an electronic set of equipment has been used, fitted with a 

probe that has a vibration transducer, preferably a piezoelectric accelerometer. This 

transducer does not need a reference point during the measurement process (as shown 

in the 4.42 figure). during measurements a recorder with magnetic band has also been 

used and its band has been interpreted in lab conditions. By using this type of device, 

a portable 7007 F recorder, manufactured by Brule and Kjaer in Denmark a 

measurement chain element has been eliminated, this being the load pre-amplifier, 

which is already incorporated in the recording machine mentioned above. 

When the spectral analysis is being done in the lab a dualchannel real time 

analyzer has been used, manufactured by Bruel and Kjaer, model 2034. After 

processing and handling the magnetic band the real time analyzer has trans ponded the 

recorded data from the time-amplitude domain into the amplitude-frequency domain, 

by using the FFT techniques (Fast Fourier Transform) displaying needed data straight 

to the operator. 

The processed data have been generated by using a numerical plotter 

manufactured by Bruel and Kjaer, 2319 model. The measuring chain has been 

presented in the 4.43 figure observing the fact the inferior branch has been applied 

onboard the ship and the superior one has been applied in lab conditions as mentioned 

in the No. [118] reference. This way measurements have been made at an axial 

vibratory level for the K6SZ 52/105 main engine. 

Shaft line axial vibrations measurements have been carried out after the owner 

has claimed that he has registered an amplifying of the vibration level onboard one of 
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his ships. Afterwards an axial vibration compensator has been fitted at the bow 

extremity of the main engine in both modes measurements being done in river 

navigation conditions. 

These measurements have been carried out for the following operating regimes 

of the main engine: 

- 100 rpm (corresponding with the starting value of critical rotational speed 

zone); 

- 115 rpm (corresponding with the ending value of the critical rotational 

speed zone); 

- 140 rpm (corresponding with the cruising speed). 
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Figure 4.41: Comparison between the first vibration modes for a for stroke 

engine, these being calculated with ANSYS software for a simplified (left) and 

complex (right) structure 

 

Axial vibration measurements have been recorded on a magnetic band and 

processed afterwards in the Sounds and Vibrations Laboratory of ICEPRONAV Galati 

Institute the results being presented and compared afterwards with the reference 

values specified in the No. [103] and [118] references and in the 4.44 figure and in 

4.15 table. 
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Thus, by applying the MEF based calculus the first own pulsation regimes 

have been discovered by obtaining the amplitude values shown in the 4.16 table. 

Additional, it has to be mentioned that the measured values of the axial vibration 

amplitude are specific for the crankshaft corresponding with the situation in which a 

compensator is not fitted. 

 

Figure 4.42: Accelerometer fitting diagram at the free end of the engine 

needed measure the axial vibration amplitude 
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Figure 4.43: Measuring chain diagram for the system used to measure 

axial vibrations on the MAN K6SZ 52/105 main engine 

It can be seen that around the 115 rpm rotational speed value a critical domain 

is being recorded for the real functioning conditions of the K6SZ 52/105 main engine 

and this confirms the above stated as well as through 2nd order own pulsation values 

previously mentioned. Truly, the rotational speed corresponding to this mode is: n0 = 

9.55 rpm, ω0 = 756,723 rpm, and the rotational resonance with the harmonic order 

component with a k = 6 order is n6 = 6 X 115 = 690 rpm, thus the ratio between the 

two rotational speed, as shown in the No. [89] reference is β = n6 / n0 = 0,91 and this 

value justifies the previous stated affirmation. Coupled vibrations calculus is being 

done only for the rotational speed corresponding to the nominal operating domain, for 

which the compensating effect can be neglected. It can be noticed that at a 140 rpm 

rotational speed the value difference between measurements and calculus is being 

placed around 9%, the compensating effect being lower and lower. 

Extrapolating the results for the K6SZ 52/2015 main engine in the proximity 

of the nominal domain at the initial 6RND90 main engine for which the complex 

vibration calculus has been done, at the same functioning regime, the experimental 

validation of the proposed calculus model can be confirmed. 
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Figure 4.44: Axial vibrations spectrograms at the free end of the MAN K6SZ 

52/105 main engine 
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Table 4.15: A comparison between axial vibrations amplitudes measured for the 

K6SZ 52/105 main engine in both cases, with and without axial vibrations 

compensator 

Main engine 

regime 

[rpm] 

 Measured parameters 

 Frequency 

[Hz] 

Amplitude [mm] 

  Without 

compensator 

With 

compensator 

Allowed 

values 

 

100 10.25 0.865 0.065 0.318 

115 11.75 2.740 0.228 0.318 

140 14.00 0.726 0.082 0.318 

 

Table 4.16: A comparison between axial vibrations amplitudes measured for the 

K6SZ 52/105 main engine and the ones calculated using MEF without an axial 

vibration compensator 

Main engine 

regime 

[rpm] 

 Measured parameters 

 Frequency 

[Hz] 

Amplitude [mm] 

  Measured Calculated Allowed 

values 

 

100 10.25 0.865 - 0.318 

115 11.75 2.740 - 0.318 

140 14.00 0.726 0.793 0.318 
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5. STRUCTURAL RESISTANCE VIBRATIONS OF MARINE 

MAIN ENGINES 

 

A particular phenomenon for marine main engines, also highlighted in Chapter 

3 is the occurrence of bending vibrations on the structural resistance elements of these 

engines. 

The complexity of studying the above mentioned vibration types is a 

consequence of the constructive complicated structural shape of engine structures and 

the variable characteristic of all loads applied on it. 

 

5.1 Bending vibrations excitation sources for structural elements of main 

engines 

The origin of these type of vibrations has been presented in the 3.2.2 

subchapter, these being the so-called lateral forces and momentum, and in that chapter 

the main own vibrating modes have been presented as well. 

Further one it must be mentioned that the main source of excitation are the 

rolling momentum acting in the motion plan of each engine drive, which are being 

generated by the inertial effects of gas pressure. The dimensional value for the 

momentum is identical with the engine momentum (as mentioned in the 2.1 

paragraph). On the general overview the harmonic component formula with a k order 

can be written for this momentum as: 

 
kkr‹s

kMM
k

 sin  (5.1) 

 

In the above formula the module and the initial phase are being deducted has 

having the same formulas presented in reference No. [7]: 
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with the |Mk| - the harmonic component module with a k order for the engine 

momentum, i - the cylinder number, δ - the angular off-set between two successive 

combustions and φi - the initial phase for the engine momentum as presented in (2.2) 

and (2.39) formulas. 

The after mentioned component can be considered as being the effect of a 

lateral force with a variable harmonic expressed as: 

 
k

kr‹s

r‹s
k

H

M

H

M
F k

k



 sin   (5.3) 

 

this force would act straight on the cylinder axis, more precisely: at the 

extremity of the resistance structure, at a H distance towards the horizontal plan that 

includes the crankshaft axis (as presented in the 3.4 figure). 

As it has been shown in the mentioned paragraph the qualitative 

approximation for the harmonic capacity taken into consideration in order to stimulate 

the structural elements is being given by the excitation degree defined in an analogical 

manner by the (4.103) formula, from which: 

,)(+)(=E
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kk
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1=j

2

kk

i

1=j

k jjjj
  cossin  (5.4) 

 

where θkj has the same specification as the one in the cited formula, while Xkj 

represents the own bending vibration modes for the engine structural resistance 

elements: 

 T

k j
X 111    (5.5) 



 

253 
 

 

for the H mode and: 

 T

k j
X 101     (5.6) 

 

for the X mode. 

It has to be mentioned that the X mode the vector is null on the corresponding 

line of the cylinder [i/2] + 1. 

 

5.2 Bending free and forced vibrations for structural resistance elements 

of marine main engines 

In order to calculate the own pulsation regimes for structural elements the 

Myklestad method is being used, as mentioned in the No. [22] reference which is used 

for structure sketching by meshing the elements in a certain number of concentrated 

mass elements bounded between them by flexible areas, while the obtained oscillating 

system is directly dependent on the vibration type of the entire structure. The main 

issue is represented by mentioning the boundary conditions for the lower element 

stiffness (at the base of the structure). Experimental measurements allowed the 

evaluation of own frequencies for the structural elements and very close values have 

been noticed, such as the ones for an embedded plate, having a ratio between the 

height of the engine H and it’s length L. Thus, for the Sulzer 6RND90 main engine the 

following data will be used: 

- Height: H = 8,5 m; 

- Length: L = 11,3 m; 

- H/L ratio: 0,75 m; 

- The own frequency H module; 

- In shipyard: ωH = 44.6 s-1
; 

- In sea trials: ωH = 40.2 s-1
; 

- The own frequency X module; 

- In shipyard: ωH = 85.4 s-1
; 
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- In sea trials: ωH = 83.5 s-1
; 

Comparing with this method the modern calculus techniques based on MEF as 

mentioned in the references No. [3], [7], [10], [17] and [20] ensure a more precise 

evaluation of own pulsations for the entire structural assembly, because it substitutes 

the simplified calculus model represented by the concentrated mass system with one 

which is much closer to the real one. Mainly, this method ensures the expression of 

Lagrange equations for a conservative force system in a matrix formulation. A 

homogenous system is being obtained needed to calculate own pulsations regime. By 

imposing the condition that the system admits different solutions comparing with the 

normal one, the own pulsation regime for the structural elements are being obtained. 

The effective calculus implies the meshing of the entire structure in finite 

elements having a square plate shape (as shown in the 5.1 figure which is valid for 

small powered engines, in generally, being tied up with more complex meshing 

situations for slower propulsion engines presented in the 3.6 figure). 

According with the above mentioned figure an (e) element with the a, b and h 

thickness is being considered and for all its nodes the following independent 

parameters are being chosen: 

- w – the displacement along the Oz axis; 

- yw
x

  - rotation around the Ox axis; 

- xw
y

  - rotation around the Oy axis. 

For the w displacement a function with the following formula is being 

accepted: 
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4321
xyayxayaxyayxaxayaxyaxayaxaaw   (5.7) 

 

or the equivalent matrix: 

aXw   (5.8) 

 

in which: 
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The ai coefficients i = 1 – 12, are being calculated by imposing boundary 

conditions regarding displacements in the element nodes. By grouping the 

displacements and the rotation of all nodes of finite elements (e) in the column vector: 

 T
yyyyxxxx

e wwwww
432143214321

)(   (5.10) 

 

the obtained value is: 

aBw e )(

 (5.11) 

 

Where B is a 12X12 matrix which has elements depending on the nodes 

coordinates. By applying the reverse matrix on the left side of the above formula B, B-

1 = H, this one not being solitaire, results: 

)(ewHa   (5.12) 

 

The displacements are being considered as being time nodal functions, starting 

with the (5.8) and (5.22) formulas, thus, the w displacement becomes: 

  )(,, ewHXyxw   (5.13) 

 

By expressing the general Hooke law, which is a feature of the tensions plan 

status the following results: 
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where υ is the Poisson coefficient, written in a matrix formulation as: 
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Figure 5.1: Finite elements structural meshing for a marine engine, finite 

elements having square plate shape 

 

D symbolizes the flexibility plate matrix, written as: 
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The C vector for the curve is defined as: 
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Applying the (5.7) equation the elements of the C are: 



 

258 
 















xyayaxaayxw

xyayaxaayw

xyayaxaaxw

11985

2

121096

22

11874

22

322

6622

6262

 (5.18) 

 

From the (5.17) and (5.18) formula the following is obtained: 
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 (5.19) 

 

The potential deformation energy can be expressed as: 

  
V
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 (5.20) 

 

By taking the above relation and based on the (5.14) formula, the following 

results: 
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Particular deformation and displacement formulas are: 
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Figure 5.2: Stabilization diagram for correlations between modal displacements 

 

Based on the non-deformability hypothesis of plate median surface, of normal 

straights and small displacements it can be proven that between the u and v 

displacements, as well as the transversal displacement w there are some form of 

dependencies (as seen in the above figure): 
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Now, by replacing (5.23) in (5.22) the following is obtained: 
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thus, the potential deformation energy becomes: 
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Using the (5.11), (5.16), (5.17), (5.18) and (5.20) the value for the U energy 

can be expressed in a matrix manner: 
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Using the following notation: 
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for the stiffness matrix of the (e) element, the (5.27) expression for the 

potential energy is being transformed into: 
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The corresponding kinetic energy for the vibrating movement which the plate 

generated is: 
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where ρ is the material density. In all integral equations form this paragraph, V 

represents the volume. By introducing (5.13) formula in the above formula will result: 
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(5.30) 

 

Using the following notation: 
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The mass matrix for the (e) element, the kinetic energy will be: 

𝐸 =  
1
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 𝑤𝑇𝑅𝑤  (5.32) 

 

By adding up all energy values for al structural elements the following results: 

 (5.33) 

 

Based on the formulas expressed above, the Lagrange equations will be: 
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the following matrix form will be adopted: 

Mw + Rw = 0  (5.35) 

 

With the vibrating motion of the entire structure written as: 

  sinWw  (5.36) 

 

The (5.35) can also be written as: 

  02  WMR  (5.37) 

 

generating an equation in the ω unknown that has a solution that leads to the 

own pulsation regime for the entire structure. 

In order to calculate the structural displacements influenced by forced 

vibrations the matrix equation will be: 

Mw + Rw = 0  (5.38) 
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in which F is the nodal force vector for the entire structure. By rewriting the 

(5.38) formula in amplitude values the following formula will be obtained: 

  FMRW 2  (5.39) 

 

for which the force module is initially considered in harmonic components, 

being given by the lateral forces (5.3), from which the vector expressed in the (5.39) 

formula is being obtained by adding up the interest harmonics, in the same manner as 

it has been done in the (4.146) formula. The presented methodology can be applied to 

a simpler structure, such as the Sulzer 6RTA58 main engine and this lead to vibrating 

modes in H and X, as stated in the No. [16] reference and the 5.3 figure in which the 

own pulsation values have also been highlighted. 

 

5.3 Experimental results of bending vibration measurements for main 

elements structural elements 

 

Bending vibrations of resistance structures of the Sulzer 5RD68 main engine 

and Sulzer 3AL25/30 auxiliary engines fitted on the cadet ships Neptun  belonging to 

the Maritime University of Constanta, having a 5500 deadweight, have been 

calculated during sea trials. This is the first engine developing a 5500 HP power at a 

135 rpm nominal rotation, while the power for the auxiliary engines is 550 HP at a 

750 rpm nominal rotation speed. 

The measurement chain is fitted with the following elements: 

- Piezoelectric accelerometer, 4388 type, manufactured by Bruel and Kjaer; 

- Preamplifier, 2623 type, manufactured by Bruel and Kjaer; 

- 2625 Amplifier, manufactured by Bruel and Kjaer; 

- Frequency analyzer, type 2120, manufactured by Bruel and Kjaer. 

- 214 oscilloscope, manufactured by Tetronix.  
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The measurement points have been set in the superior points, the ones 

corresponding to the turbocharger, with their functioning being influenced by this type 

of vibrations, as shown in the 3.2.2 paragraph. 

The 5.4 figure shows the measurement points for the auxiliary engines, while 

the 5.5 figure the ones for the main engine nominal operation range, while the result 

are shown in tables 5.1 to 5.5, being calculated after an algorithm mentioned in the 

No. [6] and [18] references. 

It can be seen that the placing of displacements in the boundary limits imposed 

by the classification societies has been done correct. 

 

Figure 5.3: Vibration modes H and X for the structural resistance for a Sulzer 

6RTA58 main engine 

 

Figure 5.4: Measurement points placing for resistance structure vibrations in the 

case of a Sulzer 3AL25/30 main engine 
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Table 5.1: Resistance structure measurement results for a Sulzer 3AL 

25/30 auxiliary engine No. 1 

No. 1 

Auxiliary 

engine 

n = 750 rpm Load = 295 kW 

Measuring 

points 

Displacement [mm] Frequency [mm] 

 V L H  

1 0.125 1.060 0.014 6.25 

1 0.087 0.020 0.005 12.50 

1 0.017 0.016 0.004 18.75 

1 0.008 0.004 0.002 25.00 

1 0.003 0.003 0.001 31.25 

1 0.002 - 0.002 37.50 

2 0.019 0.069 0.004 6.25 

2 0.003 0.014 - 12.50 

2 0.009 0.005 0.002 18.75 

2 0.002 0.004 0.001 25.00 

2 - 0.003 - 31.25 

2 - 0.001 - 37.50 

3 0.035 0.001 0.005 6.25 

3 0.035 0.001 0.003 12.50 

3 0.014 0.001 0.001 18.75 

3 0.002 - 0.001 25.00 

3 0.002 - = 31.25 

3 0.002 - 0.001 37.50 

No. 2 Auxiliary 

engine 

n = 750 rpm Load = 295 kW 

Measuring points Displacement [mm] Frequency [mm] 

 V L H  

1 0.137 0.074 0.010 6.25 

1 0.033 0.020 0.001 12.50 

1 0.029 0.011 0.002 18.75 

1 0.005 0.005 - 25.00 

1 0.002 0.006 - 31.25 

1 0.006 0.003 - 37.50 

2 0.015 0.044 0.004 6.25 

2 0.004 0.015 0.013 12.50 
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T

able 

5.2: 

Resi

stan

ce 

stru

cture measurement results for a Sulzer 3AL 25/30 auxiliary engine No. 2 

Table 5.3: Resistance structure measurement results for a Sulzer 3AL 

25/30 auxiliary engine No. 3 

No. 3 

Auxiliary 

engine 

n = 750 rpm Load = 295 kW 

Measuring 

points 

Displacement [mm] Frequency 

[mm] 

 V L H  

1 0.126 0.074 0.010 6.25 

1 0.033 0.020 0.001 12.50 

1 0.024 0.011 0.001 18.75 

1 0.009 0.003 - 25.00 

1 0.003 0.002 - 31.25 

1 0.001 0.002 - 37.50 

2 0.001 0.053 0.003 6.25 

2 0.001 0.016 0.001 12.50 

2 0.001 0.010 0.001 18.75 

2 - 0.001 - 25.00 

2 - 0.003 - 31.25 

2 - 0.002 - 37.50 

3 0.001 0.001 0.004 6.25 

3 0.001 0.001 0.001 12.50 

3 0.001 0.001 - 18.75 

3 - - - 25.00 

3 - - - 31.25 

3 - - 0.002 37.50 

2 0.007 0.001 0.002 18.75 

2 0.002 0.003 - 25.00 

2 - 0.002 - 31.25 

2 - - 0.001 37.50 

3 0.023 0.013 0.004 6.25 

3 0.029 0.008 0.002 12.50 

3 0.016 0.002 0.003 18.75 

3 0.002 0.001 0.001 25.00 

3 0.002 - 0.001 31.25 

3 0.002 - 0.002 37.50 
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Table 5.4: Resistance structure measurement results for a Sulzer 3AL 

25/30 auxiliary engine No. 4 

 

Table 5.5: Resistance structure measurement results for a Sulzer 5RD68 

main engine 

Frequency Measuring point /  Displacement amplitude  [mm] 

[Hz] Bow 

turbocharger 

Aft turbocharger 

 1 L 2 H 3 V 1 L 2 H 3 V 

2.25 0.13 0.22 0.08 0.12 0.24 0.07 

4.5 0.08 0.12 0.06 0.09 0.14 0.05 

9 0.05 0.06 0.04 0.04 0.06 0.04 

11.25 0.04 0.05 0.03 0.03 0.05 0.03 

 

No. 4 Auxiliary 

engine 

n = 750 rpm Load = 295 kW 

Measuring 

points 

Displacement [mm] Frequency [mm] 

 V L H  

1 0.106 1.060 0.011 6.25 

1 0.080 0.016 0.004 12.50 

1 0.017 0.014 0.004 18.75 

1 0.010 0.004 0.001 25.00 

1 0.004 0.003 0.001 31.25 

1 0.004 0.002 0.002 37.50 

2 0.015 0.063 0.003 6.25 

2 0.003 0.015 - 12.50 

2 0.010 0.015 - 18.75 

2 - 0.005 - 25.00 

2 - 0.003 - 31.25 

2 - 0.003 - 37.50 

3 0.038 0.001 0.004 6.25 

3 0.033 - 0.003 12.50 

3 0.013 - - 18.75 

3 0.001 - - 25.00 

3 0.002 - - 31.25 

3 0.002 - 0.001 37.50 
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